Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.01887
Cited By
Concentrated Differential Privacy
6 March 2016
Cynthia Dwork
G. Rothblum
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Concentrated Differential Privacy"
50 / 270 papers shown
Title
FedPower: Privacy-Preserving Distributed Eigenspace Estimation
Xiaoxun Guo
Xiang Li
Xiangyu Chang
Shusen Wang
Zhihua Zhang
FedML
24
3
0
01 Mar 2021
Lossless Compression of Efficient Private Local Randomizers
Vitaly Feldman
Kunal Talwar
24
40
0
24 Feb 2021
Federated
f
f
f
-Differential Privacy
Qinqing Zheng
Shuxiao Chen
Qi Long
Weijie J. Su
FedML
88
55
0
22 Feb 2021
Proactive DP: A Multple Target Optimization Framework for DP-SGD
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Phuong Ha Nguyen
14
0
0
17 Feb 2021
Leveraging Public Data for Practical Private Query Release
Terrance Liu
G. Vietri
Thomas Steinke
Jonathan R. Ullman
Zhiwei Steven Wu
161
58
0
17 Feb 2021
Differentially Private Quantiles
Jennifer Gillenwater
Matthew Joseph
Alex Kulesza
29
33
0
16 Feb 2021
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
44
232
0
12 Feb 2021
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Zhiqi Bu
Sivakanth Gopi
Janardhan Kulkarni
Y. Lee
J. Shen
U. Tantipongpipat
FedML
34
41
0
05 Feb 2021
Local Differential Privacy Is Equivalent to Contraction of
E
γ
E_γ
E
γ
-Divergence
S. Asoodeh
Maryam Aliakbarpour
Flavio du Pin Calmon
14
30
0
02 Feb 2021
Differentially Private SGD with Non-Smooth Losses
Puyu Wang
Yunwen Lei
Yiming Ying
Hai Zhang
10
28
0
22 Jan 2021
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
Milad Nasr
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Nicholas Carlini
MIACV
FedML
82
216
0
11 Jan 2021
Robustness, Privacy, and Generalization of Adversarial Training
Fengxiang He
Shaopeng Fu
Bohan Wang
Dacheng Tao
30
10
0
25 Dec 2020
Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling
Vitaly Feldman
Audra McMillan
Kunal Talwar
FedML
13
157
0
23 Dec 2020
Projection-Free Bandit Optimization with Privacy Guarantees
Alina Ene
Huy Le Nguyen
Adrian Vladu
16
3
0
22 Dec 2020
Recent advances in deep learning theory
Fengxiang He
Dacheng Tao
AI4CE
24
50
0
20 Dec 2020
Differential privacy and noisy confidentiality concepts for European population statistics
Fabian Bach
14
6
0
17 Dec 2020
Generating private data with user customization
Xiao Chen
Thomas Navidi
Ram Rajagopal
11
2
0
02 Dec 2020
The Cost of Privacy in Generalized Linear Models: Algorithms and Minimax Lower Bounds
T. Tony Cai
Yichen Wang
Linjun Zhang
FedML
43
20
0
08 Nov 2020
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
40
41
0
19 Oct 2020
Locality Sensitive Hashing with Extended Differential Privacy
Natasha Fernandes
Yusuke Kawamoto
Takao Murakami
32
12
0
19 Oct 2020
Toward Evaluating Re-identification Risks in the Local Privacy Model
Takao Murakami
Kenta Takahashi
AAML
29
10
0
16 Oct 2020
The Limits of Pan Privacy and Shuffle Privacy for Learning and Estimation
Albert Cheu
Jonathan R. Ullman
FedML
30
21
0
17 Sep 2020
Privacy-Preserving Distributed Processing: Metrics, Bounds, and Algorithms
Qiongxiu Li
Jaron Skovsted Gundersen
Richard Heusdens
M. G. Christensen
6
33
0
02 Sep 2020
Imitation Privacy
Xun Xian
Xinran Wang
Mingyi Hong
Jie Ding
R. Ghanadan
14
3
0
30 Aug 2020
Data Sanitisation Protocols for the Privacy Funnel with Differential Privacy Guarantees
Milan Lopuhaä-Zwakenberg
Haochen Tong
B. Škorić
10
6
0
30 Aug 2020
Individual Privacy Accounting via a Renyi Filter
Vitaly Feldman
Tijana Zrnic
61
86
0
25 Aug 2020
Three Variants of Differential Privacy: Lossless Conversion and Applications
S. Asoodeh
Jiachun Liao
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
6
39
0
14 Aug 2020
Differentially Private Accelerated Optimization Algorithms
Nurdan Kuru
cS. .Ilker Birbil
Mert Gurbuzbalaban
S. Yıldırım
17
23
0
05 Aug 2020
Tighter Generalization Bounds for Iterative Differentially Private Learning Algorithms
Fengxiang He
Bohan Wang
Dacheng Tao
FedML
25
17
0
18 Jul 2020
A Graph Symmetrisation Bound on Channel Information Leakage under Blowfish Privacy
Tobias Edwards
Benjamin I. P. Rubinstein
Zuhe Zhang
Sanming Zhou
18
2
0
12 Jul 2020
The Trade-Offs of Private Prediction
L. V. D. van der Maaten
Awni Y. Hannun
25
22
0
09 Jul 2020
RDP-GAN: A Rényi-Differential Privacy based Generative Adversarial Network
Chuan Ma
Jun Li
Ming Ding
Bo Liu
Kang Wei
J. Weng
H. Vincent Poor
SyDa
11
19
0
04 Jul 2020
Federated Learning and Differential Privacy: Software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preserving data privacy
Nuria Rodríguez Barroso
G. Stipcich
Daniel Jiménez-López
José Antonio Ruiz-Millán
Eugenio Martínez-Cámara
Gerardo González-Seco
M. V. Luzón
M. Veganzones
Francisco Herrera
25
100
0
02 Jul 2020
Topology-aware Differential Privacy for Decentralized Image Classification
Shangwei Guo
Tianwei Zhang
Guowen Xu
Hanzhou Yu
Tao Xiang
Yang Liu
22
18
0
14 Jun 2020
Auditing Differentially Private Machine Learning: How Private is Private SGD?
Matthew Jagielski
Jonathan R. Ullman
Alina Oprea
FedML
17
237
0
13 Jun 2020
CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas
Yihe Dong
Gautam Kamath
Jonathan R. Ullman
39
115
0
11 Jun 2020
One Step to Efficient Synthetic Data
Jordan Awan
Zhanrui Cai
28
6
0
03 Jun 2020
Revisiting Membership Inference Under Realistic Assumptions
Bargav Jayaraman
Lingxiao Wang
Katherine Knipmeyer
Quanquan Gu
David E. Evans
24
147
0
21 May 2020
Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Vitaly Feldman
Tomer Koren
Kunal Talwar
10
203
0
10 May 2020
A Primer on Private Statistics
Gautam Kamath
Jonathan R. Ullman
38
48
0
30 Apr 2020
Bounding, Concentrating, and Truncating: Unifying Privacy Loss Composition for Data Analytics
Mark Cesar
Ryan M. Rogers
17
3
0
15 Apr 2020
Assisted Learning: A Framework for Multi-Organization Learning
Xun Xian
Xinran Wang
Jie Ding
R. Ghanadan
FedML
15
1
0
01 Apr 2020
Sharp Composition Bounds for Gaussian Differential Privacy via Edgeworth Expansion
Qinqing Zheng
Jinshuo Dong
Qi Long
Weijie J. Su
FedML
9
23
0
10 Mar 2020
Generating Higher-Fidelity Synthetic Datasets with Privacy Guarantees
Aleksei Triastcyn
Boi Faltings
12
5
0
02 Mar 2020
Differential Privacy at Risk: Bridging Randomness and Privacy Budget
Ashish Dandekar
D. Basu
S. Bressan
29
8
0
02 Mar 2020
Private Stochastic Convex Optimization: Efficient Algorithms for Non-smooth Objectives
R. Arora
T. V. Marinov
Enayat Ullah
15
1
0
22 Feb 2020
Privately Learning Markov Random Fields
Huanyu Zhang
Gautam Kamath
Janardhan Kulkarni
Zhiwei Steven Wu
9
25
0
21 Feb 2020
Guidelines for Implementing and Auditing Differentially Private Systems
Daniel Kifer
Solomon Messing
Aaron Roth
Abhradeep Thakurta
Danfeng Zhang
14
34
0
10 Feb 2020
DP-CGAN: Differentially Private Synthetic Data and Label Generation
Reihaneh Torkzadehmahani
Peter Kairouz
B. Paten
SyDa
17
235
0
27 Jan 2020
A Blockchain-Based Approach for Saving and Tracking Differential-Privacy Cost
Yang Zhao
Jun Zhao
Jiawen Kang
Zehang Zhang
Dusit Niyato
Shuyu Shi
29
24
0
25 Jan 2020
Previous
1
2
3
4
5
6
Next