Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.01887
Cited By
Concentrated Differential Privacy
6 March 2016
Cynthia Dwork
G. Rothblum
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Concentrated Differential Privacy"
50 / 270 papers shown
Title
Widespread Underestimation of Sensitivity in Differentially Private Libraries and How to Fix It
Sílvia Casacuberta
Michael Shoemate
Salil P. Vadhan
Connor Wagaman
24
22
0
21 Jul 2022
Composition Theorems for Interactive Differential Privacy
Xin Lyu
12
19
0
19 Jul 2022
Concurrent Composition Theorems for Differential Privacy
Salil P. Vadhan
Wanrong Zhang
14
16
0
18 Jul 2022
Faster Privacy Accounting via Evolving Discretization
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
65
14
0
10 Jul 2022
Shuffle Gaussian Mechanism for Differential Privacy
Seng Pei Liew
Tsubasa Takahashi
FedML
29
2
0
20 Jun 2022
Private Synthetic Data with Hierarchical Structure
Terrance Liu
Zhiwei Steven Wu
SyDa
24
3
0
13 Jun 2022
Analytical Composition of Differential Privacy via the Edgeworth Accountant
Hua Wang
Sheng-yang Gao
Huanyu Zhang
Milan Shen
Weijie J. Su
FedML
33
21
0
09 Jun 2022
Confidentiality Protection in the 2020 US Census of Population and Housing
John M. Abowd
Michael B. Hawes
19
26
0
07 Jun 2022
Privacy Amplification via Shuffled Check-Ins
Seng Pei Liew
Satoshi Hasegawa
Tsubasa Takahashi
FedML
32
0
0
07 Jun 2022
Offline Reinforcement Learning with Differential Privacy
Dan Qiao
Yu-Xiang Wang
OffRL
39
23
0
02 Jun 2022
Data Augmentation MCMC for Bayesian Inference from Privatized Data
Nianqiao P. Ju
Jordan Awan
Ruobin Gong
Vinayak A. Rao
32
23
0
01 Jun 2022
Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss
Jason M. Altschuler
Kunal Talwar
FedML
36
57
0
27 May 2022
Privacy accounting
ε
\varepsilon
ε
conomics: Improving differential privacy composition via a posteriori bounds
Valentin Hartmann
Vincent Bindschaedler
Alexander Bentkamp
Robert West
24
1
0
06 May 2022
Privacy-Preserving Aggregation in Federated Learning: A Survey
Ziyao Liu
Jiale Guo
Wenzhuo Yang
Jiani Fan
Kwok-Yan Lam
Jun Zhao
FedML
32
87
0
31 Mar 2022
Private Non-Convex Federated Learning Without a Trusted Server
Andrew Lowy
Ali Ghafelebashi
Meisam Razaviyayn
FedML
36
24
0
13 Mar 2022
Fully Adaptive Composition in Differential Privacy
Justin Whitehouse
Aaditya Ramdas
Ryan M. Rogers
Zhiwei Steven Wu
8
40
0
10 Mar 2022
Differential privacy for symmetric log-concave mechanisms
S. Vinterbo
11
4
0
23 Feb 2022
Trusted AI in Multi-agent Systems: An Overview of Privacy and Security for Distributed Learning
Chuan Ma
Jun Li
Kang Wei
Bo Liu
Ming Ding
Long Yuan
Zhu Han
H. Vincent Poor
57
42
0
18 Feb 2022
Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams
S. Denisov
H. B. McMahan
J. Rush
Adam D. Smith
Abhradeep Thakurta
FedML
33
60
0
16 Feb 2022
A Joint Exponential Mechanism For Differentially Private Top-
k
k
k
Jennifer Gillenwater
Matthew Joseph
Andrés Munoz Medina
Mónica Ribero
106
14
0
28 Jan 2022
Financial Vision Based Differential Privacy Applications
Jun-Hao Chen
Yi-Jen Wang
Yun-Cheng Tsai
Samuel Yen-Chi Chen
FedML
21
1
0
28 Dec 2021
Robust and Privacy-Preserving Collaborative Learning: A Comprehensive Survey
Shangwei Guo
Xu Zhang
Feiyu Yang
Tianwei Zhang
Yan Gan
Tao Xiang
Yang Liu
FedML
31
9
0
19 Dec 2021
Are We There Yet? Timing and Floating-Point Attacks on Differential Privacy Systems
Jiankai Jin
Eleanor McMurtry
Benjamin I. P. Rubinstein
O. Ohrimenko
16
36
0
10 Dec 2021
Private and polynomial time algorithms for learning Gaussians and beyond
H. Ashtiani
Christopher Liaw
63
44
0
22 Nov 2021
Offset-Symmetric Gaussians for Differential Privacy
Parastoo Sadeghi
Mehdi Korki
18
8
0
13 Oct 2021
The Skellam Mechanism for Differentially Private Federated Learning
Naman Agarwal
Peter Kairouz
Ziyu Liu
FedML
22
122
0
11 Oct 2021
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
135
120
0
07 Oct 2021
Towards General-purpose Infrastructure for Protecting Scientific Data Under Study
Andrew Trask
Kritika Prakash
41
3
0
04 Oct 2021
A unified interpretation of the Gaussian mechanism for differential privacy through the sensitivity index
Georgios Kaissis
Moritz Knolle
F. Jungmann
Alexander Ziller
Dmitrii Usynin
Daniel Rueckert
22
1
0
22 Sep 2021
The power of private likelihood-ratio tests for goodness-of-fit in frequency tables
Emanuele Dolera
Stefano Favaro
9
1
0
20 Sep 2021
Making the Most of Parallel Composition in Differential Privacy
Joshua Smith
Hassan Jameel Asghar
Gianpaolo Gioiosa
Sirine Mrabet
Serge Gaspers
P. Tyler
31
10
0
19 Sep 2021
Utility Fairness for the Differentially Private Federated Learning
S. Alvi
Yi Hong
S. Durrani
FedML
11
8
0
11 Sep 2021
Privacy-preserving Machine Learning for Medical Image Classification
Shreyansh Singh
K. Shukla
8
5
0
29 Aug 2021
Private Retrieval, Computing and Learning: Recent Progress and Future Challenges
S. Ulukus
Salman Avestimehr
Michael C. Gastpar
S. Jafar
Ravi Tandon
Chao Tian
FedML
30
64
0
30 Jul 2021
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
21
71
0
04 Jul 2021
Smoothed Differential Privacy
Ao Liu
Yu-Xiang Wang
Lirong Xia
33
0
0
04 Jul 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
28
48
0
24 Jun 2021
Generalization in the Face of Adaptivity: A Bayesian Perspective
Moshe Shenfeld
Katrina Ligett
19
4
0
20 Jun 2021
Privacy Amplification via Iteration for Shuffled and Online PNSGD
Matteo Sordello
Zhiqi Bu
Jinshuo Dong
FedML
11
7
0
20 Jun 2021
Some Examples of Privacy-preserving Publication and Sharing of COVID-19 Pandemic Data
F. Liu
Dong Wang
Tian Yan
19
1
0
18 Jun 2021
Non-parametric Differentially Private Confidence Intervals for the Median
Joerg Drechsler
Ira Globus-Harris
Audra McMillan
Jayshree Sarathy
Adam D. Smith
19
13
0
18 Jun 2021
Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods
Terrance Liu
G. Vietri
Zhiwei Steven Wu
SyDa
33
61
0
14 Jun 2021
Numerical Composition of Differential Privacy
Sivakanth Gopi
Y. Lee
Lukas Wutschitz
14
173
0
05 Jun 2021
Concurrent Composition of Differential Privacy
Salil P. Vadhan
Tianhao Wang
11
20
0
30 May 2021
Oneshot Differentially Private Top-k Selection
Gang Qiao
Weijie J. Su
Li Zhang
13
31
0
18 May 2021
On the Renyi Differential Privacy of the Shuffle Model
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
A. Suresh
Peter Kairouz
22
44
0
11 May 2021
Channels of Small Log-Ratio Leakage and Characterization of Two-Party Differentially Private Computation
Iftach Haitner
N. Mazor
Ronen Shaltiel
Jad Silbak
FedML
20
11
0
03 May 2021
Improved Matrix Gaussian Mechanism for Differential Privacy
Jungang Yang
Liyao Xiang
Weiting Li
Wei Liu
Xinbing Wang
13
5
0
30 Apr 2021
Super-convergence and Differential Privacy: Training faster with better privacy guarantees
Osvald Frisk
Friedrich Dörmann
Christian Marius Lillelund
Christian Fischer Pedersen
FedML
11
2
0
18 Mar 2021
Quantifying identifiability to choose and audit
ε
ε
ε
in differentially private deep learning
Daniel Bernau
Günther Eibl
Philip-William Grassal
Hannah Keller
Florian Kerschbaum
FedML
14
5
0
04 Mar 2021
Previous
1
2
3
4
5
6
Next