Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.01887
Cited By
Concentrated Differential Privacy
6 March 2016
Cynthia Dwork
G. Rothblum
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Concentrated Differential Privacy"
50 / 270 papers shown
Title
Recent Advances of Differential Privacy in Centralized Deep Learning: A Systematic Survey
Lea Demelius
Roman Kern
Andreas Trügler
SyDa
FedML
36
6
0
28 Sep 2023
A Unifying Privacy Analysis Framework for Unknown Domain Algorithms in Differential Privacy
Ryan Rogers
FedML
25
1
0
17 Sep 2023
Concurrent Composition for Interactive Differential Privacy with Adaptive Privacy-Loss Parameters
Samuel Haney
Michael Shoemate
Grace Tian
Salil P. Vadhan
Andrew Vyrros
Vicki Xu
Wanrong Zhang
11
6
0
12 Sep 2023
The Complexity of Verifying Boolean Programs as Differentially Private
Mark Bun
Marco Gaboardi
Ludmila Glinskih
26
4
0
08 Sep 2023
Threshold KNN-Shapley: A Linear-Time and Privacy-Friendly Approach to Data Valuation
Jiachen T. Wang
Yuqing Zhu
Yu-Xiang Wang
R. Jia
Prateek Mittal
TDI
37
12
0
30 Aug 2023
Counting Distinct Elements Under Person-Level Differential Privacy
Alexander Knop
Thomas Steinke
22
3
0
24 Aug 2023
Batch Clipping and Adaptive Layerwise Clipping for Differential Private Stochastic Gradient Descent
Toan N. Nguyen
Phuong Ha Nguyen
Lam M. Nguyen
Marten van Dijk
17
1
0
21 Jul 2023
Probing the Transition to Dataset-Level Privacy in ML Models Using an Output-Specific and Data-Resolved Privacy Profile
Tyler LeBlond
Joseph Munoz
Fred Lu
Maya Fuchs
Elliott Zaresky-Williams
Edward Raff
Brian Testa
16
3
0
27 Jun 2023
About the Cost of Central Privacy in Density Estimation
Clément Lalanne
Aurélien Garivier
Rémi Gribonval
31
3
0
26 Jun 2023
Continual Release of Differentially Private Synthetic Data from Longitudinal Data Collections
Mark Bun
Marco Gaboardi
Marcel Neunhoeffer
Wanrong Zhang
SyDa
29
7
0
13 Jun 2023
Personalized Graph Federated Learning with Differential Privacy
François Gauthier
Vinay Chakravarthi Gogineni
Stefan Werner
Yih-Fang Huang
A. Kuh
FedML
26
7
0
10 Jun 2023
Generating Private Synthetic Data with Genetic Algorithms
Terrance Liu
Jin-Lin Tang
G. Vietri
Zhiwei Steven Wu
SyDa
21
16
0
05 Jun 2023
Less is More: Revisiting the Gaussian Mechanism for Differential Privacy
Tianxi Ji
Pan Li
11
0
0
04 Jun 2023
CRS-FL: Conditional Random Sampling for Communication-Efficient and Privacy-Preserving Federated Learning
Jianhua Wang
Xiaolin Chang
J. Misic
Vojislav B. Mišić
Lin Li
Yingying Yao
FedML
19
3
0
01 Jun 2023
Concentrated Geo-Privacy
Yuting Liang
K. Yi
19
5
0
31 May 2023
Unleashing the Power of Randomization in Auditing Differentially Private ML
Krishna Pillutla
Galen Andrew
Peter Kairouz
H. B. McMahan
Alina Oprea
Sewoong Oh
38
20
0
29 May 2023
Faster Differentially Private Convex Optimization via Second-Order Methods
Arun Ganesh
Mahdi Haghifam
Thomas Steinke
Abhradeep Thakurta
19
10
0
22 May 2023
Differential Privacy with Random Projections and Sign Random Projections
P. Li
Xiaoyun Li
41
8
0
22 May 2023
Privacy Auditing with One (1) Training Run
Thomas Steinke
Milad Nasr
Matthew Jagielski
53
77
0
15 May 2023
Privacy-Preserving In-Context Learning for Large Language Models
Tong Wu
Ashwinee Panda
Jiachen T. Wang
Prateek Mittal
53
29
0
02 May 2023
Mean Estimation Under Heterogeneous Privacy: Some Privacy Can Be Free
Syomantak Chaudhuri
T. Courtade
30
4
0
27 Apr 2023
Differential Privacy via Distributionally Robust Optimization
Aras Selvi
Huikang Liu
W. Wiesemann
33
1
0
25 Apr 2023
A Polynomial Time, Pure Differentially Private Estimator for Binary Product Distributions
Vikrant Singhal
37
9
0
13 Apr 2023
Differentially Private Stream Processing at Scale
Bing Zhang
Vadym Doroshenko
Peter Kairouz
Thomas Steinke
Abhradeep Thakurta
Zi-Tang Ma
Eidan Cohen
Himani Apte
Jodi Spacek
28
7
0
31 Mar 2023
On the Query Complexity of Training Data Reconstruction in Private Learning
Prateeti Mukherjee
Satyanarayana V. Lokam
32
0
0
29 Mar 2023
Considerations on the Theory of Training Models with Differential Privacy
Marten van Dijk
Phuong Ha Nguyen
FedML
28
2
0
08 Mar 2023
Faster high-accuracy log-concave sampling via algorithmic warm starts
Jason M. Altschuler
Sinho Chewi
29
34
0
20 Feb 2023
Breaking the Communication-Privacy-Accuracy Tradeoff with
f
f
f
-Differential Privacy
Richeng Jin
Z. Su
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
29
2
0
19 Feb 2023
An Effective and Differentially Private Protocol for Secure Distributed Cardinality Estimation
P. Wang
Chengjin Yang
Dongdong Xie
Junzhou Zhao
Hui Li
Jing Tao
Xiaohong Guan
24
2
0
04 Feb 2023
General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean Estimation
Aleksandar Nikolov
Haohua Tang
49
4
0
31 Jan 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
30
18
0
22 Jan 2023
Differentially Private Confidence Intervals for Proportions under Stratified Random Sampling
Shurong Lin
Mark Bun
Marco Gaboardi
E. D. Kolaczyk
Adam D. Smith
16
5
0
19 Jan 2023
Grafting Laplace and Gaussian distributions: A new noise mechanism for differential privacy
Gokularam Muthukrishnan
Sheetal Kalyani
28
12
0
19 Dec 2022
Generalizing DP-SGD with Shuffling and Batch Clipping
Marten van Dijk
Phuong Ha Nguyen
Toan N. Nguyen
Lam M. Nguyen
15
1
0
12 Dec 2022
Differentially Private Enhanced Permissioned Blockchain for Private Data Sharing in Industrial IoT
Muhammad Islam
M. H. Rehmani
Jinjun Chen
23
8
0
30 Nov 2022
Provable Membership Inference Privacy
Zachary Izzo
Jinsung Yoon
Sercan Ö. Arik
James Zou
44
5
0
12 Nov 2022
Directional Privacy for Deep Learning
Pedro Faustini
Natasha Fernandes
Shakila Mahjabin Tonni
Annabelle McIver
Mark Dras
19
1
0
09 Nov 2022
Privately Fine-Tuning Large Language Models with Differential Privacy
R. Behnia
Mohammadreza Ebrahimi
Jason L. Pacheco
B. Padmanabhan
29
44
0
26 Oct 2022
Differentially Private Language Models for Secure Data Sharing
Justus Mattern
Zhijing Jin
Benjamin Weggenmann
Bernhard Schoelkopf
Mrinmaya Sachan
SyDa
19
47
0
25 Oct 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Jianxin Wei
Ergute Bao
X. Xiao
Yifan Yang
46
20
0
18 Oct 2022
Differentially Private Bootstrap: New Privacy Analysis and Inference Strategies
Zhanyu Wang
Guang Cheng
Jordan Awan
34
9
0
12 Oct 2022
TAN Without a Burn: Scaling Laws of DP-SGD
Tom Sander
Pierre Stock
Alexandre Sablayrolles
FedML
44
42
0
07 Oct 2022
On the Statistical Complexity of Estimation and Testing under Privacy Constraints
Clément Lalanne
Aurélien Garivier
Rémi Gribonval
27
7
0
05 Oct 2022
Composition of Differential Privacy & Privacy Amplification by Subsampling
Thomas Steinke
64
50
0
02 Oct 2022
Algorithms with More Granular Differential Privacy Guarantees
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Thomas Steinke
62
6
0
08 Sep 2022
On the utility and protection of optimization with differential privacy and classic regularization techniques
Eugenio Lomurno
Matteo matteucci
29
9
0
07 Sep 2022
Age-Dependent Differential Privacy
Meng Zhang
Ermin Wei
R. Berry
Jianwei Huang
23
38
0
03 Sep 2022
Private Query Release via the Johnson-Lindenstrauss Transform
Aleksandar Nikolov
17
14
0
15 Aug 2022
Stronger Privacy Amplification by Shuffling for Rényi and Approximate Differential Privacy
Vitaly Feldman
Audra McMillan
Kunal Talwar
FedML
29
47
0
09 Aug 2022
Differentially Private Learning of Hawkes Processes
Mohsen Ghassemi
Eleonora Kreavcić
Niccolò Dalmasso
Vamsi K. Potluru
T. Balch
Manuela Veloso
20
1
0
27 Jul 2022
Previous
1
2
3
4
5
6
Next