ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.07576
  4. Cited By
Group Equivariant Convolutional Networks

Group Equivariant Convolutional Networks

24 February 2016
Taco S. Cohen
Max Welling
    BDL
ArXivPDFHTML

Papers citing "Group Equivariant Convolutional Networks"

50 / 502 papers shown
Title
Co-Attentive Equivariant Neural Networks: Focusing Equivariance On
  Transformations Co-Occurring In Data
Co-Attentive Equivariant Neural Networks: Focusing Equivariance On Transformations Co-Occurring In Data
David W. Romero
Mark Hoogendoorn
29
24
0
18 Nov 2019
Learning Non-Parametric Invariances from Data with Permanent Random
  Connectomes
Learning Non-Parametric Invariances from Data with Permanent Random Connectomes
Dipan K. Pal
Akshay Chawla
Marios Savvides
21
1
0
13 Nov 2019
Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods
Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods
Luca Della Libera
Vladimir Golkov
Yue Zhu
Arman Mielke
Daniel Cremers
3DH
3DPC
25
4
0
31 Oct 2019
Convolutional Conditional Neural Processes
Convolutional Conditional Neural Processes
Jonathan Gordon
W. Bruinsma
Andrew Y. K. Foong
James Requeima
Yann Dubois
Richard Turner
BDL
25
162
0
29 Oct 2019
Neural Ordinary Differential Equations for Semantic Segmentation of
  Individual Colon Glands
Neural Ordinary Differential Equations for Semantic Segmentation of Individual Colon Glands
H. Pinckaers
G. Litjens
SSeg
MedIm
22
36
0
23 Oct 2019
Improved Generalization Bounds of Group Invariant / Equivariant Deep
  Networks via Quotient Feature Spaces
Improved Generalization Bounds of Group Invariant / Equivariant Deep Networks via Quotient Feature Spaces
Akiyoshi Sannai
Masaaki Imaizumi
M. Kawano
MLT
28
29
0
15 Oct 2019
Scale-Equivariant Steerable Networks
Scale-Equivariant Steerable Networks
Li Xiao
Michal Szmaja
A. Smeulders
16
149
0
14 Oct 2019
A Simple Proof of the Universality of Invariant/Equivariant Graph Neural
  Networks
A Simple Proof of the Universality of Invariant/Equivariant Graph Neural Networks
Takanori Maehara
Hoang NT
27
29
0
09 Oct 2019
Deformable Kernels: Adapting Effective Receptive Fields for Object
  Deformation
Deformable Kernels: Adapting Effective Receptive Fields for Object Deformation
Hang Gao
Xizhou Zhu
Steve Lin
Jifeng Dai
21
64
0
07 Oct 2019
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity
  as a Surrogate
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate
Lu Mi
Hao Wang
Yonglong Tian
Hao He
Nir Shavit
UQCV
26
30
0
28 Sep 2019
B-Spline CNNs on Lie Groups
B-Spline CNNs on Lie Groups
Erik J. Bekkers
AI4CE
40
129
0
26 Sep 2019
Horizontal Flows and Manifold Stochastics in Geometric Deep Learning
Horizontal Flows and Manifold Stochastics in Geometric Deep Learning
Stefan Sommer
A. Bronstein
23
11
0
13 Sep 2019
Embracing Imperfect Datasets: A Review of Deep Learning Solutions for
  Medical Image Segmentation
Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation
Nima Tajbakhsh
Laura Jeyaseelan
Q. Li
J. Chiang
Zhihao Wu
Xiaowei Ding
38
752
0
27 Aug 2019
Unsupervised Learning Framework of Interest Point Via Properties
  Optimization
Unsupervised Learning Framework of Interest Point Via Properties Optimization
Pei Yan
Yihua Tan
Yuan Xiao
Yuan Tai
Caizhen Wen
30
2
0
26 Jul 2019
Extracting Interpretable Physical Parameters from Spatiotemporal Systems
  using Unsupervised Learning
Extracting Interpretable Physical Parameters from Spatiotemporal Systems using Unsupervised Learning
Peter Y. Lu
Samuel Kim
Marin Soljacic
AI4CE
22
59
0
13 Jul 2019
Effective Rotation-invariant Point CNN with Spherical Harmonics kernels
Effective Rotation-invariant Point CNN with Spherical Harmonics kernels
A. Poulenard
Marie-Julie Rakotosaona
Yann Ponty
M. Ovsjanikov
3DPC
28
102
0
27 Jun 2019
Invariance-inducing regularization using worst-case transformations
  suffices to boost accuracy and spatial robustness
Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness
Fanny Yang
Zuowen Wang
C. Heinze-Deml
28
42
0
26 Jun 2019
SurReal: Fréchet Mean and Distance Transform for Complex-Valued Deep
  Learning
SurReal: Fréchet Mean and Distance Transform for Complex-Valued Deep Learning
Rudrasis Chakraborty
Jiayun Wang
Stella X. Yu
19
15
0
24 Jun 2019
Cormorant: Covariant Molecular Neural Networks
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong-Son Hy
Risi Kondor
42
421
0
06 Jun 2019
Covariance in Physics and Convolutional Neural Networks
Covariance in Physics and Convolutional Neural Networks
Miranda C. N. Cheng
V. Anagiannis
Maurice Weiler
P. D. Haan
Taco S. Cohen
Max Welling
51
18
0
06 Jun 2019
Provably scale-covariant continuous hierarchical networks based on
  scale-normalized differential expressions coupled in cascade
Provably scale-covariant continuous hierarchical networks based on scale-normalized differential expressions coupled in cascade
T. Lindeberg
27
19
0
29 May 2019
Unsupervised Model Selection for Variational Disentangled Representation
  Learning
Unsupervised Model Selection for Variational Disentangled Representation Learning
Sunny Duan
Loic Matthey
Andre Saraiva
Nicholas Watters
Christopher P. Burgess
Alexander Lerchner
I. Higgins
OOD
DRL
19
78
0
29 May 2019
Deep Scale-spaces: Equivariance Over Scale
Deep Scale-spaces: Equivariance Over Scale
Daniel E. Worrall
Max Welling
BDL
24
166
0
28 May 2019
Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds
Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds
Michael Perlmutter
Feng Gao
Guy Wolf
M. Hirn
19
13
0
24 May 2019
Affine Variational Autoencoders: An Efficient Approach for Improving
  Generalization and Robustness to Distribution Shift
Affine Variational Autoencoders: An Efficient Approach for Improving Generalization and Robustness to Distribution Shift
Rene Bidart
A. Wong
DRL
OOD
19
5
0
13 May 2019
Universal Invariant and Equivariant Graph Neural Networks
Universal Invariant and Equivariant Graph Neural Networks
Nicolas Keriven
Gabriel Peyré
33
287
0
13 May 2019
DeepSphere: towards an equivariant graph-based spherical CNN
DeepSphere: towards an equivariant graph-based spherical CNN
M. Defferrard
Nathanael Perraudin
T. Kacprzak
R. Sgier
GNN
34
24
0
08 Apr 2019
Branched Multi-Task Networks: Deciding What Layers To Share
Branched Multi-Task Networks: Deciding What Layers To Share
Simon Vandenhende
Stamatios Georgoulis
Bert De Brabandere
Luc Van Gool
25
145
0
05 Apr 2019
Spatio-Temporal Deep Learning-Based Undersampling Artefact Reduction for
  2D Radial Cine MRI with Limited Data
Spatio-Temporal Deep Learning-Based Undersampling Artefact Reduction for 2D Radial Cine MRI with Limited Data
A. Kofler
M. Dewey
T. Schaeffter
Christian Wald
C. Kolbitsch
3DPC
27
74
0
01 Apr 2019
Discrete Rotation Equivariance for Point Cloud Recognition
Discrete Rotation Equivariance for Point Cloud Recognition
Jiaxin Li
Yingcai Bi
Gim Hee Lee
3DPC
30
24
0
31 Mar 2019
Informed Machine Learning -- A Taxonomy and Survey of Integrating
  Knowledge into Learning Systems
Informed Machine Learning -- A Taxonomy and Survey of Integrating Knowledge into Learning Systems
Laura von Rueden
S. Mayer
Katharina Beckh
B. Georgiev
Sven Giesselbach
...
Rajkumar Ramamurthy
Michal Walczak
Jochen Garcke
Christian Bauckhage
Jannis Schuecker
39
626
0
29 Mar 2019
Reducing the dilution: An analysis of the information sensitiveness of
  capsule network with a practical improvement method
Reducing the dilution: An analysis of the information sensitiveness of capsule network with a practical improvement method
Zonglin Yang
Xinggang Wang
AAML
33
5
0
25 Mar 2019
AVT: Unsupervised Learning of Transformation Equivariant Representations
  by Autoencoding Variational Transformations
AVT: Unsupervised Learning of Transformation Equivariant Representations by Autoencoding Variational Transformations
Guo-Jun Qi
Liheng Zhang
Chang Wen Chen
Qi Tian
DRL
21
42
0
23 Mar 2019
Relational Pooling for Graph Representations
Relational Pooling for Graph Representations
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Bruno Ribeiro
GNN
36
257
0
06 Mar 2019
Deep learning in bioinformatics: introduction, application, and
  perspective in big data era
Deep learning in bioinformatics: introduction, application, and perspective in big data era
Yu Li
Chao Huang
Lizhong Ding
Zhongxiao Li
Yijie Pan
Xin Gao
AI4CE
29
295
0
28 Feb 2019
Adversarial Attack and Defense on Point Sets
Adversarial Attack and Defense on Point Sets
Jiancheng Yang
Qiang Zhang
Rongyao Fang
Bingbing Ni
Jinxian Liu
Qi Tian
3DPC
24
122
0
28 Feb 2019
Transformation Consistent Self-ensembling Model for Semi-supervised
  Medical Image Segmentation
Transformation Consistent Self-ensembling Model for Semi-supervised Medical Image Segmentation
Xuelong Li
Lequan Yu
Hao Chen
Chi-Wing Fu
Lei Xing
Pheng-Ann Heng
MedIm
26
379
0
28 Feb 2019
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
61
404
0
11 Feb 2019
OrthographicNet: A Deep Transfer Learning Approach for 3D Object
  Recognition in Open-Ended Domains
OrthographicNet: A Deep Transfer Learning Approach for 3D Object Recognition in Open-Ended Domains
Hamidreza Kasaei
21
28
0
08 Feb 2019
Equivariant Transformer Networks
Equivariant Transformer Networks
Kai Sheng Tai
Peter Bailis
Gregory Valiant
ViT
19
69
0
25 Jan 2019
Fast Markov Chain Monte Carlo Algorithms via Lie Groups
Fast Markov Chain Monte Carlo Algorithms via Lie Groups
Steve Huntsman
31
2
0
24 Jan 2019
Application of Decision Rules for Handling Class Imbalance in Semantic
  Segmentation
Application of Decision Rules for Handling Class Imbalance in Semantic Segmentation
Robin Shing Moon Chan
Matthias Rottmann
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
SSeg
13
40
0
24 Jan 2019
Towards a topological-geometrical theory of group equivariant
  non-expansive operators for data analysis and machine learning
Towards a topological-geometrical theory of group equivariant non-expansive operators for data analysis and machine learning
M. Bergomi
Patrizio Frosini
D. Giorgi
Nicola Quercioli
AI4CE
27
48
0
31 Dec 2018
Multi-Dimensional Scaling on Groups
Multi-Dimensional Scaling on Groups
Mark Blumstein
Henry Kvinge
19
3
0
08 Dec 2018
Quantizing Euclidean motions via double-coset decomposition
Quantizing Euclidean motions via double-coset decomposition
C. Wülker
Gregory Chirikjian
20
9
0
28 Nov 2018
Stochastic Deep Networks
Stochastic Deep Networks
Gwendoline de Bie
Gabriel Peyré
Marco Cuturi
30
21
0
19 Nov 2018
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
310
0
05 Nov 2018
Rotational 3D Texture Classification Using Group Equivariant CNNs
Rotational 3D Texture Classification Using Group Equivariant CNNs
Vincent Andrearczyk
Adrien Depeursinge
21
12
0
16 Oct 2018
Pose Estimation for Objects with Rotational Symmetry
Pose Estimation for Objects with Rotational Symmetry
Enric Corona
Kaustav Kundu
Sanja Fidler
18
38
0
13 Oct 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian
  Processes
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
25
307
0
11 Oct 2018
Previous
123...101189
Next