ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02488
17
0

Evaluating Local Explanations using White-box Models

4 June 2021
Amir Hossein Akhavan Rahnama
Judith Butepage
Pierre Geurts
Henrik Bostrom
    FAtt
ArXivPDFHTML
Abstract

Evaluating explanation techniques using human subjects is costly, time-consuming and can lead to subjectivity in the assessments. To evaluate the accuracy of local explanations, we require access to the true feature importance scores for a given instance. However, the prediction function of a model usually does not decompose into linear additive terms that indicate how much a feature contributes to the output. In this work, we suggest to instead focus on the log odds ratio (LOR) of the prediction function, which naturally decomposes into additive terms for logistic regression and naive Bayes. We demonstrate how we can benchmark different explanation techniques in terms of their similarity to the LOR scores based on our proposed approach. In the experiments, we compare prominent local explanation techniques and find that the performance of the techniques can depend on the underlying model, the dataset, which data point is explained, the normalization of the data and the similarity metric.

View on arXiv
Comments on this paper