ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.02450
  4. Cited By
Loss factorization, weakly supervised learning and label noise
  robustness

Loss factorization, weakly supervised learning and label noise robustness

8 February 2016
Giorgio Patrini
Frank Nielsen
Richard Nock
M. Carioni
    NoLa
ArXivPDFHTML

Papers citing "Loss factorization, weakly supervised learning and label noise robustness"

19 / 19 papers shown
Title
Deep Positive-Unlabeled Anomaly Detection for Contaminated Unlabeled Data
Deep Positive-Unlabeled Anomaly Detection for Contaminated Unlabeled Data
Hiroshi Takahashi
Tomoharu Iwata
Atsutoshi Kumagai
Yuuki Yamanaka
43
1
0
29 May 2024
DC-Check: A Data-Centric AI checklist to guide the development of
  reliable machine learning systems
DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems
Nabeel Seedat
F. Imrie
M. Schaar
27
12
0
09 Nov 2022
Improving Data Quality with Training Dynamics of Gradient Boosting
  Decision Trees
Improving Data Quality with Training Dynamics of Gradient Boosting Decision Trees
M. Ponti
L. Oliveira
Mathias Esteban
Valentina Garcia
J. Román
Luis Argerich
TDI
30
4
0
20 Oct 2022
Towards Harnessing Feature Embedding for Robust Learning with Noisy
  Labels
Towards Harnessing Feature Embedding for Robust Learning with Noisy Labels
Chuang Zhang
Li Shen
Jian Yang
Chen Gong
NoLa
27
5
0
27 Jun 2022
Instance-Dependent Label-Noise Learning with Manifold-Regularized
  Transition Matrix Estimation
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation
De-Chun Cheng
Tongliang Liu
Yixiong Ning
Nannan Wang
Bo Han
Gang Niu
Xinbo Gao
Masashi Sugiyama
NoLa
39
65
0
06 Jun 2022
Multi-class Label Noise Learning via Loss Decomposition and Centroid
  Estimation
Multi-class Label Noise Learning via Loss Decomposition and Centroid Estimation
Yongliang Ding
Tao Zhou
Chuang Zhang
Yijing Luo
Juan Tang
Chen Gong
NoLa
32
4
0
21 Mar 2022
Analysing the Noise Model Error for Realistic Noisy Label Data
Analysing the Noise Model Error for Realistic Noisy Label Data
Michael A. Hedderich
D. Zhu
Dietrich Klakow
NoLa
29
19
0
24 Jan 2021
Beyond Class-Conditional Assumption: A Primary Attempt to Combat
  Instance-Dependent Label Noise
Beyond Class-Conditional Assumption: A Primary Attempt to Combat Instance-Dependent Label Noise
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
40
122
0
10 Dec 2020
A Survey of Label-noise Representation Learning: Past, Present and
  Future
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
24
158
0
09 Nov 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
27
45
0
28 May 2020
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
NoLa
37
104
0
11 Jan 2020
Deep learning with noisy labels: exploring techniques and remedies in
  medical image analysis
Deep learning with noisy labels: exploring techniques and remedies in medical image analysis
Davood Karimi
Haoran Dou
Simon K. Warfield
Ali Gholipour
NoLa
24
535
0
05 Dec 2019
Confident Learning: Estimating Uncertainty in Dataset Labels
Confident Learning: Estimating Uncertainty in Dataset Labels
Curtis G. Northcutt
Lu Jiang
Isaac L. Chuang
NoLa
38
674
0
31 Oct 2019
Learning with Inadequate and Incorrect Supervision
Learning with Inadequate and Incorrect Supervision
Chen Gong
Hengmin Zhang
Jian Yang
Dacheng Tao
11
33
0
20 Feb 2019
Learning Deep Networks from Noisy Labels with Dropout Regularization
Learning Deep Networks from Noisy Labels with Dropout Regularization
Ishan Jindal
M. Nokleby
Xuewen Chen
NoLa
6
183
0
09 May 2017
Positive-Unlabeled Learning with Non-Negative Risk Estimator
Positive-Unlabeled Learning with Non-Negative Risk Estimator
Ryuichi Kiryo
Gang Niu
M. C. D. Plessis
Masashi Sugiyama
33
468
0
02 Mar 2017
Making Deep Neural Networks Robust to Label Noise: a Loss Correction
  Approach
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Lizhen Qu
NoLa
51
1,435
0
13 Sep 2016
Learning from Binary Labels with Instance-Dependent Corruption
Learning from Binary Labels with Instance-Dependent Corruption
A. Menon
Brendan van Rooyen
Nagarajan Natarajan
NoLa
31
41
0
03 May 2016
Double Ramp Loss Based Reject Option Classifier
Double Ramp Loss Based Reject Option Classifier
Naresh Manwani
Aritra Ghosh
P. Sastry
Ramasubramanian Sundararajan
40
49
0
26 Nov 2013
1