Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.02450
Cited By
Loss factorization, weakly supervised learning and label noise robustness
8 February 2016
Giorgio Patrini
Frank Nielsen
Richard Nock
M. Carioni
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Loss factorization, weakly supervised learning and label noise robustness"
19 / 19 papers shown
Title
Deep Positive-Unlabeled Anomaly Detection for Contaminated Unlabeled Data
Hiroshi Takahashi
Tomoharu Iwata
Atsutoshi Kumagai
Yuuki Yamanaka
43
1
0
29 May 2024
DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems
Nabeel Seedat
F. Imrie
M. Schaar
27
12
0
09 Nov 2022
Improving Data Quality with Training Dynamics of Gradient Boosting Decision Trees
M. Ponti
L. Oliveira
Mathias Esteban
Valentina Garcia
J. Román
Luis Argerich
TDI
30
4
0
20 Oct 2022
Towards Harnessing Feature Embedding for Robust Learning with Noisy Labels
Chuang Zhang
Li Shen
Jian Yang
Chen Gong
NoLa
27
5
0
27 Jun 2022
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation
De-Chun Cheng
Tongliang Liu
Yixiong Ning
Nannan Wang
Bo Han
Gang Niu
Xinbo Gao
Masashi Sugiyama
NoLa
39
65
0
06 Jun 2022
Multi-class Label Noise Learning via Loss Decomposition and Centroid Estimation
Yongliang Ding
Tao Zhou
Chuang Zhang
Yijing Luo
Juan Tang
Chen Gong
NoLa
32
4
0
21 Mar 2022
Analysing the Noise Model Error for Realistic Noisy Label Data
Michael A. Hedderich
D. Zhu
Dietrich Klakow
NoLa
29
19
0
24 Jan 2021
Beyond Class-Conditional Assumption: A Primary Attempt to Combat Instance-Dependent Label Noise
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
40
122
0
10 Dec 2020
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
24
158
0
09 Nov 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
27
45
0
28 May 2020
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
NoLa
37
104
0
11 Jan 2020
Deep learning with noisy labels: exploring techniques and remedies in medical image analysis
Davood Karimi
Haoran Dou
Simon K. Warfield
Ali Gholipour
NoLa
24
535
0
05 Dec 2019
Confident Learning: Estimating Uncertainty in Dataset Labels
Curtis G. Northcutt
Lu Jiang
Isaac L. Chuang
NoLa
38
674
0
31 Oct 2019
Learning with Inadequate and Incorrect Supervision
Chen Gong
Hengmin Zhang
Jian Yang
Dacheng Tao
11
33
0
20 Feb 2019
Learning Deep Networks from Noisy Labels with Dropout Regularization
Ishan Jindal
M. Nokleby
Xuewen Chen
NoLa
6
183
0
09 May 2017
Positive-Unlabeled Learning with Non-Negative Risk Estimator
Ryuichi Kiryo
Gang Niu
M. C. D. Plessis
Masashi Sugiyama
33
468
0
02 Mar 2017
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Lizhen Qu
NoLa
51
1,435
0
13 Sep 2016
Learning from Binary Labels with Instance-Dependent Corruption
A. Menon
Brendan van Rooyen
Nagarajan Natarajan
NoLa
31
41
0
03 May 2016
Double Ramp Loss Based Reject Option Classifier
Naresh Manwani
Aritra Ghosh
P. Sastry
Ramasubramanian Sundararajan
38
49
0
26 Nov 2013
1