Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.02442
Cited By
A Simple Practical Accelerated Method for Finite Sums
8 February 2016
Aaron Defazio
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Simple Practical Accelerated Method for Finite Sums"
24 / 24 papers shown
Title
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
33
1
0
09 Nov 2023
Stochastic Distributed Optimization under Average Second-order Similarity: Algorithms and Analysis
Dachao Lin
Yuze Han
Haishan Ye
Zhihua Zhang
22
11
0
15 Apr 2023
On the fast convergence of minibatch heavy ball momentum
Raghu Bollapragada
Tyler Chen
Rachel A. Ward
26
17
0
15 Jun 2022
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms
Binghui Xie
Chen Jin
Kaiwen Zhou
James Cheng
Wei Meng
37
1
0
28 Apr 2022
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
47
186
0
05 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
32
0
0
26 Aug 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
39
50
0
08 Jul 2020
Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization
Chaobing Song
Yong Jiang
Yi Ma
53
23
0
18 Jun 2020
Gradient tracking and variance reduction for decentralized optimization and machine learning
Ran Xin
S. Kar
U. Khan
19
10
0
13 Feb 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
35
17
0
11 Feb 2020
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
25
30
0
22 Oct 2019
Asynchronous Accelerated Proximal Stochastic Gradient for Strongly Convex Distributed Finite Sums
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulié
FedML
8
26
0
28 Jan 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
Aaron Defazio
Léon Bottou
UQCV
DRL
23
112
0
11 Dec 2018
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou
Fanhua Shang
James Cheng
14
74
0
28 Jun 2018
Towards More Efficient Stochastic Decentralized Learning: Faster Convergence and Sparse Communication
Zebang Shen
Aryan Mokhtari
Tengfei Zhou
P. Zhao
Hui Qian
25
56
0
25 May 2018
On the insufficiency of existing momentum schemes for Stochastic Optimization
Rahul Kidambi
Praneeth Netrapalli
Prateek Jain
Sham Kakade
ODL
22
117
0
15 Mar 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
19
199
0
27 Dec 2017
Stochastic Nonconvex Optimization with Large Minibatches
Weiran Wang
Nathan Srebro
36
26
0
25 Sep 2017
A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints
Bin Hu
Peter M. Seiler
Anders Rantzer
24
35
0
25 Jun 2017
Memory and Communication Efficient Distributed Stochastic Optimization with Minibatch-Prox
Jialei Wang
Weiran Wang
Nathan Srebro
16
54
0
21 Feb 2017
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
51
1,876
0
08 Oct 2016
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
16
150
0
24 Aug 2016
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
79
317
0
18 Feb 2014
1