Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.01783
Cited By
Asynchronous Methods for Deep Reinforcement Learning
4 February 2016
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Asynchronous Methods for Deep Reinforcement Learning"
46 / 1,546 papers shown
Title
Learning What Data to Learn
Yang Fan
Fei Tian
Tao Qin
Jiang Bian
Tie-Yan Liu
15
79
0
28 Feb 2017
Learning Control for Air Hockey Striking using Deep Reinforcement Learning
Ayal Taitler
N. Shimkin
17
10
0
26 Feb 2017
Online Meta-learning by Parallel Algorithm Competition
Stefan Elfwing
E. Uchibe
Kenji Doya
31
22
0
24 Feb 2017
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
58
1,380
0
24 Feb 2017
Active One-shot Learning
Mark P. Woodward
Chelsea Finn
VLM
OffRL
13
130
0
21 Feb 2017
Real-time visual tracking by deep reinforced decision making
Janghoon Choi
Junseok Kwon
Kyoung Mu Lee
16
41
0
21 Feb 2017
Learning to Multi-Task by Active Sampling
Sahil Sharma
Ashutosh Jha
Parikshit Hegde
Balaraman Ravindran
21
21
0
20 Feb 2017
Preparing for the Unknown: Learning a Universal Policy with Online System Identification
Wenhao Yu
Jie Tan
Chenxi Liu
Greg Turk
OffRL
26
306
0
08 Feb 2017
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
78
4,809
0
26 Jan 2017
Learning Light Transport the Reinforced Way
Ken Dahm
A. Keller
20
62
0
25 Jan 2017
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,505
0
25 Jan 2017
Regularizing Neural Networks by Penalizing Confident Output Distributions
Gabriel Pereyra
George Tucker
J. Chorowski
Lukasz Kaiser
Geoffrey E. Hinton
NoLa
39
1,127
0
23 Jan 2017
The Predictron: End-To-End Learning and Planning
David Silver
H. V. Hasselt
Matteo Hessel
Tom Schaul
A. Guez
...
Gabriel Dulac-Arnold
David P. Reichert
Neil C. Rabinowitz
André Barreto
T. Degris
23
289
0
28 Dec 2016
Loss is its own Reward: Self-Supervision for Reinforcement Learning
Evan Shelhamer
Parsa Mahmoudieh
Max Argus
Trevor Darrell
SSL
24
186
0
21 Dec 2016
DeepMind Lab
Charlie Beattie
Joel Z Leibo
Denis Teplyashin
Tom Ward
Marcus Wainwright
...
Stephen Gaffney
Helen King
Demis Hassabis
Shane Legg
Stig Petersen
22
240
0
12 Dec 2016
Towards better decoding and language model integration in sequence to sequence models
J. Chorowski
Navdeep Jaitly
17
368
0
08 Dec 2016
Combining Deep Reinforcement Learning and Safety Based Control for Autonomous Driving
Xincheng Xiong
Jianqiang Wang
Fang Zhang
Keqiang Li
31
66
0
01 Dec 2016
Neural Combinatorial Optimization with Reinforcement Learning
Irwan Bello
Hieu H. Pham
Quoc V. Le
Mohammad Norouzi
Samy Bengio
71
1,461
0
29 Nov 2016
Nonparametric General Reinforcement Learning
Jan Leike
OffRL
39
26
0
28 Nov 2016
Dense Captioning with Joint Inference and Visual Context
L. Yang
K. Tang
Jianchao Yang
Li-Jia Li
VLM
30
169
0
21 Nov 2016
Local minima in training of neural networks
G. Swirszcz
Wojciech M. Czarnecki
Razvan Pascanu
ODL
37
73
0
19 Nov 2016
Reinforcement Learning with Unsupervised Auxiliary Tasks
Max Jaderberg
Volodymyr Mnih
Wojciech M. Czarnecki
Tom Schaul
Joel Z Leibo
David Silver
Koray Kavukcuoglu
SSL
13
1,222
0
16 Nov 2016
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
60
760
0
15 Nov 2016
How to scale distributed deep learning?
Peter H. Jin
Qiaochu Yuan
F. Iandola
Kurt Keutzer
3DH
27
136
0
14 Nov 2016
RL
2
^2
2
: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
35
1,008
0
09 Nov 2016
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
S. Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard Turner
Sergey Levine
OffRL
BDL
32
343
0
07 Nov 2016
Playing SNES in the Retro Learning Environment
Nadav Bhonker
Shai Rozenberg
Itay Hubara
26
19
0
07 Nov 2016
Learning to Perform Physics Experiments via Deep Reinforcement Learning
Misha Denil
Pulkit Agrawal
Tejas D. Kulkarni
Tom Erez
Peter W. Battaglia
Nando de Freitas
AI4CE
46
339
0
06 Nov 2016
Learning to Act by Predicting the Future
Alexey Dosovitskiy
V. Koltun
29
280
0
06 Nov 2016
Combining policy gradient and Q-learning
Brendan O'Donoghue
Rémi Munos
Koray Kavukcuoglu
Volodymyr Mnih
OffRL
OnRL
30
139
0
05 Nov 2016
Learning and Transfer of Modulated Locomotor Controllers
N. Heess
Greg Wayne
Yuval Tassa
Timothy Lillicrap
Martin Riedmiller
David Silver
35
207
0
17 Oct 2016
Sim-to-Real Robot Learning from Pixels with Progressive Nets
Andrei A. Rusu
Matej Vecerík
Thomas Rothörl
N. Heess
Razvan Pascanu
R. Hadsell
39
532
0
13 Oct 2016
Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search
Ali Yahya
A. Li
Mrinal Kalakrishnan
Yevgen Chebotar
Sergey Levine
OffRL
23
155
0
03 Oct 2016
Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning
Yuke Zhu
Roozbeh Mottaghi
Eric Kolve
Joseph J. Lim
Abhinav Gupta
Li Fei-Fei
Ali Farhadi
VGen
30
1,512
0
16 Sep 2016
The Option-Critic Architecture
Pierre-Luc Bacon
J. Harb
Doina Precup
OffRL
19
1,071
0
16 Sep 2016
Reward Augmented Maximum Likelihood for Neural Structured Prediction
Mohammad Norouzi
Samy Bengio
Zhehuai Chen
Navdeep Jaitly
M. Schuster
Yonghui Wu
Dale Schuurmans
35
252
0
01 Sep 2016
Memory-Efficient Backpropagation Through Time
A. Gruslys
Rémi Munos
Ivo Danihelka
Marc Lanctot
Alex Graves
35
228
0
10 Jun 2016
Safe and Efficient Off-Policy Reinforcement Learning
Rémi Munos
T. Stepleton
Anna Harutyunyan
Marc G. Bellemare
OffRL
69
609
0
08 Jun 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
31
1,456
0
06 Jun 2016
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
18
5,029
0
05 Jun 2016
Option Discovery in Hierarchical Reinforcement Learning using Spatio-Temporal Clustering
A. Srinivas
Ramnandan Krishnamurthy
Peeyush Kumar
Balaraman Ravindran
19
41
0
17 May 2016
A Deep Hierarchical Approach to Lifelong Learning in Minecraft
Chen Tessler
Shahar Givony
Tom Zahavy
D. Mankowitz
Shie Mannor
CLL
30
377
0
25 Apr 2016
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
Tejas D. Kulkarni
Karthik Narasimhan
A. Saeedi
J. Tenenbaum
25
1,127
0
20 Apr 2016
Learning values across many orders of magnitude
H. V. Hasselt
A. Guez
Matteo Hessel
Volodymyr Mnih
David Silver
17
169
0
24 Feb 2016
Value Iteration Networks
Aviv Tamar
Yi Wu
G. Thomas
Sergey Levine
Pieter Abbeel
29
649
0
09 Feb 2016
NetVLAD: CNN architecture for weakly supervised place recognition
Relja Arandjelović
Petr Gronát
Akihiko Torii
Tomas Pajdla
Josef Sivic
3DV
SSL
82
2,612
0
23 Nov 2015
Previous
1
2
3
...
29
30
31