ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.07913
  4. Cited By
Parameterized Machine Learning for High-Energy Physics

Parameterized Machine Learning for High-Energy Physics

28 January 2016
Pierre Baldi
Kyle Cranmer
Taylor Faucett
Peter Sadowski
D. Whiteson
    AI4CE
    PINN
ArXivPDFHTML

Papers citing "Parameterized Machine Learning for High-Energy Physics"

24 / 24 papers shown
Title
Contrastive Normalizing Flows for Uncertainty-Aware Parameter Estimation
Contrastive Normalizing Flows for Uncertainty-Aware Parameter Estimation
Ibrahim Elsharkawy
Yonatan Kahn
21
0
0
13 May 2025
Discriminative versus Generative Approaches to Simulation-based Inference
Benjamin Sluijter
S. Diefenbacher
W. Bhimji
Benjamin Nachman
51
0
0
11 Mar 2025
FAIR Universe HiggsML Uncertainty Challenge Competition
FAIR Universe HiggsML Uncertainty Challenge Competition
W. Bhimji
P. Calafiura
Ragansu Chakkappai
Yuan-Tang Chou
S. Diefenbacher
...
D. Rousseau
Benjamin Sluijter
Benjamin Thorne
Ihsan Ullah
Yulei Zhang
46
2
0
03 Oct 2024
Improving Parametric Neural Networks for High-Energy Physics (and
  Beyond)
Improving Parametric Neural Networks for High-Energy Physics (and Beyond)
Luca Anzalone
T. Diotalevi
D. Bonacorsi
32
3
0
01 Feb 2022
Autoencoders for Semivisible Jet Detection
Autoencoders for Semivisible Jet Detection
F. Canelli
A. de Cosa
L. Le Pottier
J. Niedziela
K. Pedro
M. Pierini
27
33
0
06 Dec 2021
A Cautionary Tale of Decorrelating Theory Uncertainties
A Cautionary Tale of Decorrelating Theory Uncertainties
A. Ghosh
Benjamin Nachman
32
17
0
16 Sep 2021
Deconvolution-and-convolution Networks
Deconvolution-and-convolution Networks
Yimin Yang
Wandong Zhang
Jonathan Wu
Will Zhao
Ao Chen
21
8
0
22 Mar 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
39
178
0
02 Feb 2021
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
Benjamin Nachman
Jesse Thaler
37
33
0
18 Jan 2021
Dealing with Nuisance Parameters using Machine Learning in High Energy
  Physics: a Review
Dealing with Nuisance Parameters using Machine Learning in High Energy Physics: a Review
T. Dorigo
P. D. Castro
20
14
0
17 Jul 2020
General Framework for Binary Classification on Top Samples
General Framework for Binary Classification on Top Samples
Lukáš Adam
V. Mácha
Václav Smídl
Tomás Pevný
29
5
0
25 Feb 2020
Simulation Assisted Likelihood-free Anomaly Detection
Simulation Assisted Likelihood-free Anomaly Detection
Anders Andreassen
Benjamin Nachman
David Shih
16
112
0
14 Jan 2020
MadMiner: Machine learning-based inference for particle physics
MadMiner: Machine learning-based inference for particle physics
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
21
113
0
24 Jul 2019
Effective LHC measurements with matrix elements and machine learning
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
23
14
0
04 Jun 2019
CrossTrainer: Practical Domain Adaptation with Loss Reweighting
CrossTrainer: Practical Domain Adaptation with Loss Reweighting
Justin Chen
Edward Gan
Kexin Rong
S. Suri
Peter Bailis
22
4
0
07 May 2019
INFERNO: Inference-Aware Neural Optimisation
INFERNO: Inference-Aware Neural Optimisation
P. D. Castro
T. Dorigo
24
47
0
12 Jun 2018
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
181
0
30 May 2018
A Guide to Constraining Effective Field Theories with Machine Learning
A Guide to Constraining Effective Field Theories with Machine Learning
Johann Brehmer
Kyle Cranmer
Gilles Louppe
J. Pavez
13
138
0
30 Apr 2018
Constraining Effective Field Theories with Machine Learning
Constraining Effective Field Theories with Machine Learning
Johann Brehmer
Kyle Cranmer
Gilles Louppe
J. Pavez
AI4CE
13
149
0
30 Apr 2018
Learning Bayesian Networks from Big Data with Greedy Search:
  Computational Complexity and Efficient Implementation
Learning Bayesian Networks from Big Data with Greedy Search: Computational Complexity and Efficient Implementation
M. Scutari
C. Vitolo
A. Tucker
29
99
0
22 Apr 2018
Extremely Fast Decision Tree
Extremely Fast Decision Tree
Chaitanya Manapragada
Geoffrey I. Webb
Mahsa Salehi
13
143
0
24 Feb 2018
Binarsity: a penalization for one-hot encoded features in linear
  supervised learning
Binarsity: a penalization for one-hot encoded features in linear supervised learning
Mokhtar Z. Alaya
Simon Bussy
Stéphane Gaïffas
Agathe Guilloux
34
30
0
24 Mar 2017
Decorrelated Jet Substructure Tagging using Adversarial Neural Networks
Decorrelated Jet Substructure Tagging using Adversarial Neural Networks
C. Shimmin
Peter Sadowski
Pierre Baldi
E. Weik
D. Whiteson
Edward Goul
A. Søgaard
GAN
27
114
0
10 Mar 2017
Multiple Instance Learning: A Survey of Problem Characteristics and
  Applications
Multiple Instance Learning: A Survey of Problem Characteristics and Applications
M. Carbonneau
Dovile Juodelyte
Eric Granger
G. Gagnon
23
614
0
11 Dec 2016
1