Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.07913
Cited By
Parameterized Machine Learning for High-Energy Physics
28 January 2016
Pierre Baldi
Kyle Cranmer
Taylor Faucett
Peter Sadowski
D. Whiteson
AI4CE
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Parameterized Machine Learning for High-Energy Physics"
24 / 24 papers shown
Title
Contrastive Normalizing Flows for Uncertainty-Aware Parameter Estimation
Ibrahim Elsharkawy
Yonatan Kahn
21
0
0
13 May 2025
Discriminative versus Generative Approaches to Simulation-based Inference
Benjamin Sluijter
S. Diefenbacher
W. Bhimji
Benjamin Nachman
51
0
0
11 Mar 2025
FAIR Universe HiggsML Uncertainty Challenge Competition
W. Bhimji
P. Calafiura
Ragansu Chakkappai
Yuan-Tang Chou
S. Diefenbacher
...
D. Rousseau
Benjamin Sluijter
Benjamin Thorne
Ihsan Ullah
Yulei Zhang
46
2
0
03 Oct 2024
Improving Parametric Neural Networks for High-Energy Physics (and Beyond)
Luca Anzalone
T. Diotalevi
D. Bonacorsi
32
3
0
01 Feb 2022
Autoencoders for Semivisible Jet Detection
F. Canelli
A. de Cosa
L. Le Pottier
J. Niedziela
K. Pedro
M. Pierini
27
33
0
06 Dec 2021
A Cautionary Tale of Decorrelating Theory Uncertainties
A. Ghosh
Benjamin Nachman
30
17
0
16 Sep 2021
Deconvolution-and-convolution Networks
Yimin Yang
Wandong Zhang
Jonathan Wu
Will Zhao
Ao Chen
21
8
0
22 Mar 2021
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
39
178
0
02 Feb 2021
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
Benjamin Nachman
Jesse Thaler
37
33
0
18 Jan 2021
Dealing with Nuisance Parameters using Machine Learning in High Energy Physics: a Review
T. Dorigo
P. D. Castro
18
14
0
17 Jul 2020
General Framework for Binary Classification on Top Samples
Lukáš Adam
V. Mácha
Václav Smídl
Tomás Pevný
29
5
0
25 Feb 2020
Simulation Assisted Likelihood-free Anomaly Detection
Anders Andreassen
Benjamin Nachman
David Shih
14
112
0
14 Jan 2020
MadMiner: Machine learning-based inference for particle physics
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
21
113
0
24 Jul 2019
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
23
14
0
04 Jun 2019
CrossTrainer: Practical Domain Adaptation with Loss Reweighting
Justin Chen
Edward Gan
Kexin Rong
S. Suri
Peter Bailis
22
4
0
07 May 2019
INFERNO: Inference-Aware Neural Optimisation
P. D. Castro
T. Dorigo
24
47
0
12 Jun 2018
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
181
0
30 May 2018
A Guide to Constraining Effective Field Theories with Machine Learning
Johann Brehmer
Kyle Cranmer
Gilles Louppe
J. Pavez
9
138
0
30 Apr 2018
Constraining Effective Field Theories with Machine Learning
Johann Brehmer
Kyle Cranmer
Gilles Louppe
J. Pavez
AI4CE
11
149
0
30 Apr 2018
Learning Bayesian Networks from Big Data with Greedy Search: Computational Complexity and Efficient Implementation
M. Scutari
C. Vitolo
A. Tucker
29
99
0
22 Apr 2018
Extremely Fast Decision Tree
Chaitanya Manapragada
Geoffrey I. Webb
Mahsa Salehi
11
143
0
24 Feb 2018
Binarsity: a penalization for one-hot encoded features in linear supervised learning
Mokhtar Z. Alaya
Simon Bussy
Stéphane Gaïffas
Agathe Guilloux
34
30
0
24 Mar 2017
Decorrelated Jet Substructure Tagging using Adversarial Neural Networks
C. Shimmin
Peter Sadowski
Pierre Baldi
E. Weik
D. Whiteson
Edward Goul
A. Søgaard
GAN
25
114
0
10 Mar 2017
Multiple Instance Learning: A Survey of Problem Characteristics and Applications
M. Carbonneau
Dovile Juodelyte
Eric Granger
G. Gagnon
23
614
0
11 Dec 2016
1