ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06196
  4. Cited By
Importance Sampling: Intrinsic Dimension and Computational Cost

Importance Sampling: Intrinsic Dimension and Computational Cost

19 November 2015
S. Agapiou
O. Papaspiliopoulos
D. Sanz-Alonso
Andrew M. Stuart
ArXivPDFHTML

Papers citing "Importance Sampling: Intrinsic Dimension and Computational Cost"

28 / 28 papers shown
Title
Improving the evaluation of samplers on multi-modal targets
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
113
0
0
11 Apr 2025
SoftCVI: Contrastive variational inference with self-generated soft labels
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
53
0
0
22 Jul 2024
Robust Inference of Dynamic Covariance Using Wishart Processes and
  Sequential Monte Carlo
Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
Hester Huijsdens
D. Leeftink
Linda Geerligs
Max Hinne
37
0
0
07 Jun 2024
Properties of Marginal Sequential Monte Carlo Methods
Properties of Marginal Sequential Monte Carlo Methods
F. R. Crucinio
A. M. Johansen
26
2
0
06 Mar 2023
Rare event ABC-SMC$^{2}$
Rare event ABC-SMC2^{2}2
Ivis Kerama
Thomas Thorne
R. Everitt
18
0
0
03 Nov 2022
Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with
  Gaussian Processes
Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with Gaussian Processes
Joe Watson
Jan Peters
26
15
0
07 Oct 2022
Fast Offline Policy Optimization for Large Scale Recommendation
Fast Offline Policy Optimization for Large Scale Recommendation
Otmane Sakhi
D. Rohde
Alexandre Gilotte
OffRL
37
3
0
08 Aug 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference
  with Markovian Gradients
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
J. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
26
8
0
13 Jun 2022
Global convergence of optimized adaptive importance samplers
Global convergence of optimized adaptive importance samplers
Ömer Deniz Akyildiz
30
7
0
02 Jan 2022
Programmatic Reward Design by Example
Programmatic Reward Design by Example
Weichao Zhou
Wenchao Li
34
15
0
14 Dec 2021
Bounding Wasserstein distance with couplings
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
17
8
0
06 Dec 2021
A Variational Inference Approach to Inverse Problems with Gamma
  Hyperpriors
A Variational Inference Approach to Inverse Problems with Gamma Hyperpriors
Shivendra Agrawal
Hwanwoo Kim
D. Sanz-Alonso
A. Strang
6
10
0
26 Nov 2021
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
Achille Thin
Yazid Janati
Sylvain Le Corff
Charles Ollion
Arnaud Doucet
Alain Durmus
Eric Moulines
C. Robert
25
7
0
17 Mar 2021
Product-form estimators: exploiting independence to scale up Monte Carlo
Product-form estimators: exploiting independence to scale up Monte Carlo
Juan Kuntz
F. R. Crucinio
A. M. Johansen
26
10
0
23 Feb 2021
Advances in Importance Sampling
Advances in Importance Sampling
Victor Elvira
Luca Martino
AI4TS
40
103
0
10 Feb 2021
A unified performance analysis of likelihood-informed subspace methods
A unified performance analysis of likelihood-informed subspace methods
Tiangang Cui
X. Tong
21
26
0
07 Jan 2021
Context-aware surrogate modeling for balancing approximation and
  sampling costs in multi-fidelity importance sampling and Bayesian inverse
  problems
Context-aware surrogate modeling for balancing approximation and sampling costs in multi-fidelity importance sampling and Bayesian inverse problems
Terrence Alsup
Benjamin Peherstorfer
27
11
0
22 Oct 2020
Data-Driven Forward Discretizations for Bayesian Inversion
Data-Driven Forward Discretizations for Bayesian Inversion
Daniele Bigoni
Yuming Chen
Nicolas García Trillos
Youssef Marzouk
D. Sanz-Alonso
AI4CE
28
11
0
18 Mar 2020
BIMC: The Bayesian Inverse Monte Carlo method for goal-oriented
  uncertainty quantification. Part I
BIMC: The Bayesian Inverse Monte Carlo method for goal-oriented uncertainty quantification. Part I
Siddhant Wahal
George Biros
12
7
0
02 Nov 2019
Kernel Methods for Bayesian Elliptic Inverse Problems on Manifolds
Kernel Methods for Bayesian Elliptic Inverse Problems on Manifolds
J. Harlim
D. Sanz-Alonso
Ruiyi Yang
19
19
0
23 Oct 2019
Estimating Convergence of Markov chains with L-Lag Couplings
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
22
47
0
23 May 2019
Local Regularization of Noisy Point Clouds: Improved Global Geometric
  Estimates and Data Analysis
Local Regularization of Noisy Point Clouds: Improved Global Geometric Estimates and Data Analysis
Nicolas García Trillos
D. Sanz-Alonso
Ruiyi Yang
3DPC
14
17
0
06 Apr 2019
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank D. Wood
26
31
0
20 Jul 2018
On a Metropolis-Hastings importance sampling estimator
On a Metropolis-Hastings importance sampling estimator
Daniel Rudolf
Björn Sprungk
21
21
0
18 May 2018
On the Consistency of Graph-based Bayesian Learning and the Scalability
  of Sampling Algorithms
On the Consistency of Graph-based Bayesian Learning and the Scalability of Sampling Algorithms
Nicolas García Trillos
Zachary T. Kaplan
Thabo Samakhoana
D. Sanz-Alonso
20
19
0
20 Oct 2017
Sequential Monte Carlo with transformations
Sequential Monte Carlo with transformations
R. Everitt
Richard Culliford
F. Medina-Aguayo
Daniel J. Wilson
36
14
0
20 Dec 2016
Effective Sample Size for Importance Sampling based on discrepancy
  measures
Effective Sample Size for Importance Sampling based on discrepancy measures
Luca Martino
Victor Elvira
F. Louzada
22
177
0
10 Feb 2016
Sharp failure rates for the bootstrap particle filter in high dimensions
Sharp failure rates for the bootstrap particle filter in high dimensions
Peter J. Bickel
Bo Li
T. Bengtsson
69
198
0
21 May 2008
1