ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.05176
  4. Cited By
MuProp: Unbiased Backpropagation for Stochastic Neural Networks

MuProp: Unbiased Backpropagation for Stochastic Neural Networks

16 November 2015
S. Gu
Sergey Levine
Ilya Sutskever
A. Mnih
    BDL
ArXivPDFHTML

Papers citing "MuProp: Unbiased Backpropagation for Stochastic Neural Networks"

41 / 41 papers shown
Title
Learning to Inference Adaptively for Multimodal Large Language Models
Learning to Inference Adaptively for Multimodal Large Language Models
Zhuoyan Xu
Khoi Duc Nguyen
Preeti Mukherjee
Saurabh Bagchi
Somali Chaterji
Yingyu Liang
Yin Li
LRM
52
1
0
13 Mar 2025
Bridging Discrete and Backpropagation: Straight-Through and Beyond
Bridging Discrete and Backpropagation: Straight-Through and Beyond
Liyuan Liu
Chengyu Dong
Xiaodong Liu
Bin-Xia Yu
Jianfeng Gao
BDL
26
20
0
17 Apr 2023
Machine learning using magnetic stochastic synapses
Machine learning using magnetic stochastic synapses
Matthew O. A. Ellis
A. Welbourne
Stephan J. Kyle
P. Fry
D. Allwood
T. Hayward
Eleni Vasilaki
24
5
0
03 Mar 2023
AskewSGD : An Annealed interval-constrained Optimisation method to train
  Quantized Neural Networks
AskewSGD : An Annealed interval-constrained Optimisation method to train Quantized Neural Networks
Louis Leconte
S. Schechtman
Eric Moulines
29
4
0
07 Nov 2022
LARO: Learned Acquisition and Reconstruction Optimization to accelerate
  Quantitative Susceptibility Mapping
LARO: Learned Acquisition and Reconstruction Optimization to accelerate Quantitative Susceptibility Mapping
Jinwei Zhang
P. Spincemaille
Hang Zhang
Thanh D. Nguyen
Chao Li
Jiahao Nick Li
I. Kovanlikaya
M. Sabuncu
Yi Wang
26
9
0
01 Nov 2022
Gradient Estimation with Discrete Stein Operators
Gradient Estimation with Discrete Stein Operators
Jiaxin Shi
Yuhao Zhou
Jessica Hwang
Michalis K. Titsias
Lester W. Mackey
33
22
0
19 Feb 2022
Recall@k Surrogate Loss with Large Batches and Similarity Mixup
Recall@k Surrogate Loss with Large Batches and Similarity Mixup
Yash J. Patel
Giorgos Tolias
Jirí Matas
VLM
44
54
0
25 Aug 2021
A Unified Deep Model of Learning from both Data and Queries for
  Cardinality Estimation
A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation
Peizhi Wu
Gao Cong
OOD
16
64
0
26 Jul 2021
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
AI4CE
19
5
0
04 Jun 2021
Deep Learning-based Resource Allocation For Device-to-Device
  Communication
Deep Learning-based Resource Allocation For Device-to-Device Communication
Woongsup Lee
R. Schober
17
38
0
25 Nov 2020
Sample Efficient Reinforcement Learning with REINFORCE
Sample Efficient Reinforcement Learning with REINFORCE
Junzi Zhang
Jongho Kim
Brendan O'Donoghue
Stephen P. Boyd
42
101
0
22 Oct 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
138
48
0
20 Oct 2020
Gradient Estimation with Stochastic Softmax Tricks
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
36
85
0
15 Jun 2020
UFO-BLO: Unbiased First-Order Bilevel Optimization
UFO-BLO: Unbiased First-Order Bilevel Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
34
7
0
05 Jun 2020
Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks
Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks
Alexander Shekhovtsov
V. Yanush
B. Flach
MQ
37
10
0
04 Jun 2020
Joint Stochastic Approximation and Its Application to Learning Discrete
  Latent Variable Models
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
Memristors -- from In-memory computing, Deep Learning Acceleration,
  Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired
  Computing
Memristors -- from In-memory computing, Deep Learning Acceleration, Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired Computing
A. Mehonic
Abu Sebastian
Bipin Rajendran
Osvaldo Simeone
Eleni Vasilaki
A. Kenyon
24
200
0
30 Apr 2020
Estimating Gradients for Discrete Random Variables by Sampling without
  Replacement
Estimating Gradients for Discrete Random Variables by Sampling without Replacement
W. Kool
H. V. Hoof
Max Welling
BDL
31
49
0
14 Feb 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Pengyu Cheng
YooJung Choi
Yitao Liang
Dinghan Shen
Ricardo Henao
Mathias Niepert
24
14
0
05 Oct 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
45
397
0
25 Jun 2019
ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient
  Backpropagation Through Categorical Variables
ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables
Mingzhang Yin
Yuguang Yue
Mingyuan Zhou
16
23
0
04 May 2019
TD-Regularized Actor-Critic Methods
TD-Regularized Actor-Critic Methods
Simone Parisi
Voot Tangkaratt
Jan Peters
Mohammad Emtiyaz Khan
OffRL
27
32
0
19 Dec 2018
Neural Joint Source-Channel Coding
Neural Joint Source-Channel Coding
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
13
38
0
19 Nov 2018
Bayesian Prediction of Future Street Scenes using Synthetic Likelihoods
Bayesian Prediction of Future Street Scenes using Synthetic Likelihoods
Apratim Bhattacharyya
Mario Fritz
Bernt Schiele
UQCV
25
46
0
01 Oct 2018
Improved Gradient-Based Optimization Over Discrete Distributions
Improved Gradient-Based Optimization Over Discrete Distributions
Evgeny Andriyash
Arash Vahdat
W. Macready
16
9
0
29 Sep 2018
A Review of Learning with Deep Generative Models from Perspective of
  Graphical Modeling
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
31
16
0
05 Aug 2018
Accurate and Diverse Sampling of Sequences based on a "Best of Many"
  Sample Objective
Accurate and Diverse Sampling of Sequences based on a "Best of Many" Sample Objective
Apratim Bhattacharyya
Bernt Schiele
Mario Fritz
28
113
0
20 Jun 2018
Bayesian Prediction of Future Street Scenes through Importance Sampling based Optimization
Apratim Bhattacharyya
Mario Fritz
Bernt Schiele
UQCV
BDL
24
2
0
18 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
25
30
0
01 Jun 2018
DVAE++: Discrete Variational Autoencoders with Overlapping
  Transformations
DVAE++: Discrete Variational Autoencoders with Overlapping Transformations
Arash Vahdat
W. Macready
Zhengbing Bian
Amir Khoshaman
Evgeny Andriyash
37
75
0
14 Feb 2018
Stochastic Sequential Neural Networks with Structured Inference
Stochastic Sequential Neural Networks with Structured Inference
Hao Liu
Haoli Bai
Lirong He
Zenglin Xu
BDL
23
3
0
24 May 2017
Data-efficient Deep Reinforcement Learning for Dexterous Manipulation
Data-efficient Deep Reinforcement Learning for Dexterous Manipulation
I. Popov
N. Heess
Timothy Lillicrap
Roland Hafner
Gabriel Barth-Maron
Matej Vecerík
Thomas Lampe
Yuval Tassa
Tom Erez
Martin Riedmiller
OffRL
17
263
0
10 Apr 2017
REBAR: Low-variance, unbiased gradient estimates for discrete latent
  variable models
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
47
282
0
21 Mar 2017
Boundary-Seeking Generative Adversarial Networks
Boundary-Seeking Generative Adversarial Networks
R. Devon Hjelm
Athul Paul Jacob
Tong Che
Adam Trischler
Kyunghyun Cho
Yoshua Bengio
GAN
23
170
0
27 Feb 2017
Stochastic Generative Hashing
Stochastic Generative Hashing
Bo Dai
Ruiqi Guo
Sanjiv Kumar
Niao He
Le Song
TPM
35
106
0
11 Jan 2017
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
S. Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard Turner
Sergey Levine
OffRL
BDL
24
343
0
07 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
24
2,508
0
02 Nov 2016
Deep Amortized Inference for Probabilistic Programs
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
24
81
0
18 Oct 2016
Overdispersed Black-Box Variational Inference
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
22
47
0
03 Mar 2016
Variational inference for Monte Carlo objectives
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
52
288
0
22 Feb 2016
1