ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.05121
  4. Cited By
Deep Kalman Filters

Deep Kalman Filters

16 November 2015
Rahul G. Krishnan
Uri Shalit
David Sontag
    BDL
    AI4TS
ArXivPDFHTML

Papers citing "Deep Kalman Filters"

50 / 73 papers shown
Title
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
78
1
0
20 Feb 2025
Deep Kalman Filters Can Filter
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
53
1
0
31 Dec 2024
AI-Aided Kalman Filters
AI-Aided Kalman Filters
Nir Shlezinger
Guy Revach
Anubhab Ghosh
S. Chatterjee
Shuo Tang
Tales Imbiriba
J. Duník
O. Straka
Pau Closas
Yonina C. Eldar
77
3
0
16 Oct 2024
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Julius Aka
Johannes Brunnemann
Jörg Eiden
Arne Speerforck
Lars Mikelsons
31
0
0
14 Oct 2024
Meta-Dynamical State Space Models for Integrative Neural Data Analysis
Meta-Dynamical State Space Models for Integrative Neural Data Analysis
Ayesha Vermani
Josue Nassar
Hyungju Jeon
Matthew Dowling
Il Memming Park
31
1
0
07 Oct 2024
State-observation augmented diffusion model for nonlinear assimilation with unknown dynamics
State-observation augmented diffusion model for nonlinear assimilation with unknown dynamics
Zhuoyuan Li
Bin Dong
Linyue Chu
36
0
0
31 Jul 2024
Learning to Select the Best Forecasting Tasks for Clinical Outcome
  Prediction
Learning to Select the Best Forecasting Tasks for Clinical Outcome Prediction
Yuan Xue
Nan Du
A. Mottram
Martin G. Seneviratne
Andrew M. Dai
AI4TS
46
0
0
28 Jul 2024
Probabilistic Forecasting of Irregular Time Series via Conditional Flows
Probabilistic Forecasting of Irregular Time Series via Conditional Flows
Vijaya Krishna Yalavarthi
Randolf Scholz
Stefan Born
Lars Schmidt-Thieme
AI4TS
35
0
0
09 Feb 2024
A projected nonlinear state-space model for forecasting time series signals
A projected nonlinear state-space model for forecasting time series signals
Christian Donner
Anuj Mishra
Hideaki Shimazaki
AI4TS
21
0
0
22 Nov 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
71
2
0
16 Oct 2023
Recovering a Molecule's 3D Dynamics from Liquid-phase Electron
  Microscopy Movies
Recovering a Molecule's 3D Dynamics from Liquid-phase Electron Microscopy Movies
E. Ye
Yuhang Wang
Hong Zhang
Y. Gao
Huan Wang
H. Sun
31
2
0
23 Aug 2023
Continuous time recurrent neural networks: overview and application to
  forecasting blood glucose in the intensive care unit
Continuous time recurrent neural networks: overview and application to forecasting blood glucose in the intensive care unit
O. Fitzgerald
O. Perez-Concha
B. Gallego-Luxan
Alejandro Metke-Jimenez
Lachlan Rudd
Louisa R Jorm
BDL
OOD
AI4TS
36
0
0
14 Apr 2023
Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning
Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning
Anastasis Kratsios
Cody B. Hyndman
25
0
0
17 Feb 2023
Criteria for Classifying Forecasting Methods
Criteria for Classifying Forecasting Methods
Tim Januschowski
Jan Gasthaus
Bernie Wang
David Salinas
Valentin Flunkert
Michael Bohlke-Schneider
Laurent Callot
AI4TS
21
173
0
07 Dec 2022
PRISM: Probabilistic Real-Time Inference in Spatial World Models
PRISM: Probabilistic Real-Time Inference in Spatial World Models
Atanas Mirchev
Baris Kayalibay
Ahmed Agha
Patrick van der Smagt
Daniel Cremers
Justin Bayer
VGen
28
0
0
06 Dec 2022
The future is different: Large pre-trained language models fail in
  prediction tasks
The future is different: Large pre-trained language models fail in prediction tasks
K. Cvejoski
Ramses J. Sanchez
C. Ojeda
22
3
0
01 Nov 2022
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
OOD
28
14
0
24 Oct 2022
Learning Robust Dynamics through Variational Sparse Gating
Learning Robust Dynamics through Variational Sparse Gating
A. Jain
Shivakanth Sujit
S. Joshi
Vincent Michalski
Danijar Hafner
Samira Ebrahimi Kahou
27
8
0
21 Oct 2022
On Uncertainty in Deep State Space Models for Model-Based Reinforcement
  Learning
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
P. Becker
Gerhard Neumann
30
9
0
17 Oct 2022
Neural modal ordinary differential equations: Integrating physics-based
  modeling with neural ordinary differential equations for modeling
  high-dimensional monitored structures
Neural modal ordinary differential equations: Integrating physics-based modeling with neural ordinary differential equations for modeling high-dimensional monitored structures
Zhilu Lai
Wei Liu
Xudong Jian
Kiran Bacsa
Limin Sun
Eleni Chatzi
AI4CE
26
22
0
16 Jul 2022
Hybrid Neural Network Augmented Physics-based Models for Nonlinear
  Filtering
Hybrid Neural Network Augmented Physics-based Models for Nonlinear Filtering
Tales Imbiriba
Ahmet Demirkaya
J. Duník
O. Straka
Deniz Erdoğmuş
Pau Closas
31
12
0
13 Apr 2022
Linear Variational State-Space Filtering
Linear Variational State-Space Filtering
Daniel Pfrommer
Nikolai Matni
30
1
0
04 Jan 2022
SSDNet: State Space Decomposition Neural Network for Time Series
  Forecasting
SSDNet: State Space Decomposition Neural Network for Time Series Forecasting
Yang Lin
I. Koprinska
Mashud Rana
BDL
AI4TS
26
31
0
19 Dec 2021
On the Stochastic Stability of Deep Markov Models
On the Stochastic Stability of Deep Markov Models
Ján Drgoňa
Sayak Mukherjee
Jiaxin Zhang
Frank Liu
M. Halappanavar
BDL
25
5
0
08 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical
  Systems
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
33
93
0
02 Nov 2021
Learning to Assimilate in Chaotic Dynamical Systems
Learning to Assimilate in Chaotic Dynamical Systems
Michael McCabe
Jed Brown
AI4TS
36
10
0
01 Nov 2021
Roto-translated Local Coordinate Frames For Interacting Dynamical
  Systems
Roto-translated Local Coordinate Frames For Interacting Dynamical Systems
Miltiadis Kofinas
N. S. Nagaraja
E. Gavves
AI4CE
19
32
0
28 Oct 2021
Contrastively Disentangled Sequential Variational Autoencoder
Contrastively Disentangled Sequential Variational Autoencoder
M. Kiener
Weiran Wang
Michael Gerndt
CoGe
DRL
27
40
0
22 Oct 2021
Unsupervised Learned Kalman Filtering
Unsupervised Learned Kalman Filtering
Guy Revach
Nir Shlezinger
Timur Locher
Xiaoyong Ni
Ruud J. G. van Sloun
Yonina C. Eldar
SSL
31
31
0
18 Oct 2021
Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
  Systems with Uncertainty
Physics-guided Deep Markov Models for Learning Nonlinear Dynamical Systems with Uncertainty
Wei Liu
Zhilu Lai
Kiran Bacsa
Eleni Chatzi
PINN
BDL
AI4CE
20
33
0
16 Oct 2021
Action-Sufficient State Representation Learning for Control with
  Structural Constraints
Action-Sufficient State Representation Learning for Control with Structural Constraints
Erdun Gao
Chaochao Lu
Liu Leqi
José Miguel Hernández-Lobato
Clark Glymour
Bernhard Schölkopf
Kun Zhang
49
32
0
12 Oct 2021
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
  Dynamics
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics
Guy Revach
Nir Shlezinger
Xiaoyong Ni
Adrià López Escoriza
Ruud J. G. van Sloun
Yonina C. Eldar
25
264
0
21 Jul 2021
Improve Agents without Retraining: Parallel Tree Search with Off-Policy
  Correction
Improve Agents without Retraining: Parallel Tree Search with Off-Policy Correction
Assaf Hallak
Gal Dalal
Steven Dalton
I. Frosio
Shie Mannor
Gal Chechik
OffRL
OnRL
35
9
0
04 Jul 2021
Time Series Anomaly Detection for Cyber-Physical Systems via Neural
  System Identification and Bayesian Filtering
Time Series Anomaly Detection for Cyber-Physical Systems via Neural System Identification and Bayesian Filtering
Cheng Feng
Pengwei Tian
AI4TS
19
75
0
15 Jun 2021
A Benchmark of Dynamical Variational Autoencoders applied to Speech
  Spectrogram Modeling
A Benchmark of Dynamical Variational Autoencoders applied to Speech Spectrogram Modeling
Xiaoyu Bie
Laurent Girin
Simon Leglaive
Thomas Hueber
Xavier Alameda-Pineda
21
12
0
11 Jun 2021
End-To-End Semi-supervised Learning for Differentiable Particle Filters
End-To-End Semi-supervised Learning for Differentiable Particle Filters
Hao Wen
Xiongjie Chen
Georgios Papagiannis
Conghui Hu
Yunpeng Li
33
17
0
11 Nov 2020
Mastering Atari with Discrete World Models
Mastering Atari with Discrete World Models
Danijar Hafner
Timothy Lillicrap
Mohammad Norouzi
Jimmy Ba
DRL
48
814
0
05 Oct 2020
Variational Temporal Deep Generative Model for Radar HRRP Target
  Recognition
Variational Temporal Deep Generative Model for Radar HRRP Target Recognition
D. Guo
Bo Chen
Wenchao Chen
C. Wang
Hongwei Liu
Mingyuan Zhou
BDL
35
35
0
28 Sep 2020
70 years of machine learning in geoscience in review
70 years of machine learning in geoscience in review
Jesper Sören Dramsch
VLM
AI4CE
32
160
0
16 Jun 2020
End-to-end Autonomous Driving Perception with Sequential Latent
  Representation Learning
End-to-end Autonomous Driving Perception with Sequential Latent Representation Learning
Jianyu Chen
Zhuo Xu
Masayoshi Tomizuka
BDL
22
13
0
21 Mar 2020
Disentangling Physical Dynamics from Unknown Factors for Unsupervised
  Video Prediction
Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
Vincent Le Guen
Nicolas Thome
AI4CE
PINN
91
289
0
03 Mar 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
37
6,111
0
22 Oct 2019
An Efficient and Effective Second-Order Training Algorithm for
  LSTM-based Adaptive Learning
An Efficient and Effective Second-Order Training Algorithm for LSTM-based Adaptive Learning
Nuri Mert Vural
Salih Ergüt
Suleyman Serdar Kozat
11
12
0
22 Oct 2019
Recurrent Attentive Neural Process for Sequential Data
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDL
AI4TS
27
38
0
17 Oct 2019
Set Functions for Time Series
Set Functions for Time Series
Max Horn
Michael Moor
Christian Bock
Bastian Alexander Rieck
Karsten M. Borgwardt
AI4TS
27
145
0
26 Sep 2019
Particle Smoothing Variational Objectives
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
16
10
0
20 Sep 2019
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
17
245
0
09 Jul 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a
  Latent Variable Model
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
25
371
0
01 Jul 2019
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDa
CML
AI4TS
45
290
0
29 May 2019
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for
  Health Profiling
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling
Hao Wang
Chengzhi Mao
Hao He
Mingmin Zhao
Tommi Jaakkola
Dina Katabi
BDL
24
22
0
06 Feb 2019
12
Next