ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.09176
23
0

Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning

17 February 2023
Anastasis Kratsios
Cody B. Hyndman
ArXivPDFHTML
Abstract

We consider the problem of simultaneously approximating the conditional distribution of market prices and their log returns with a single machine learning model. We show that an instance of the GDN model of Kratsios and Papon (2022) solves this problem without having prior assumptions on the market's "clipped" log returns, other than that they follow a generalized Ornstein-Uhlenbeck process with a priori unknown dynamics. We provide universal approximation guarantees for these conditional distributions and contingent claims with a Lipschitz payoff function.

View on arXiv
Comments on this paper