Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.03917
Cited By
Dropping Convexity for Faster Semi-definite Optimization
14 September 2015
Srinadh Bhojanapalli
Anastasios Kyrillidis
Sujay Sanghavi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dropping Convexity for Faster Semi-definite Optimization"
50 / 88 papers shown
Title
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
45
36
0
13 Apr 2025
When Can We Solve the Weighted Low Rank Approximation Problem in Truly Subquadratic Time?
Chenyang Li
Yingyu Liang
Zhenmei Shi
Zhao-quan Song
36
3
0
24 Feb 2025
Implicit Bias in Matrix Factorization and its Explicit Realization in a New Architecture
Yikun Hou
Suvrit Sra
A. Yurtsever
34
0
0
28 Jan 2025
LASE: Learned Adjacency Spectral Embeddings
Sofía Pérez Casulo
Marcelo Fiori
Federico Larroca
Gonzalo Mateos
AI4TS
GNN
38
0
0
23 Dec 2024
Provable Acceleration of Nesterov's Accelerated Gradient for Rectangular Matrix Factorization and Linear Neural Networks
Zhenghao Xu
Yuqing Wang
T. Zhao
Rachel Ward
Molei Tao
29
0
0
12 Oct 2024
Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent
Zhiyu Liu
Zhi Han
Yandong Tang
Xi-Le Zhao
Yao Wang
50
1
0
22 Jan 2024
How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing: The Curses of Symmetry and Initialization
Nuoya Xiong
Lijun Ding
Simon S. Du
35
11
0
03 Oct 2023
Conic Descent Redux for Memory-Efficient Optimization
Bingcong Li
G. Giannakis
21
0
0
13 Aug 2023
Gradient-Based Spectral Embeddings of Random Dot Product Graphs
Marcelo Fiori
Bernardo Marenco
Federico Larroca
P. Bermolen
Gonzalo Mateos
BDL
27
3
0
25 Jul 2023
Convergence of Alternating Gradient Descent for Matrix Factorization
R. Ward
T. Kolda
22
6
0
11 May 2023
Symphony in the Latent Space: Provably Integrating High-dimensional Techniques with Non-linear Machine Learning Models
Qiong Wu
Jian Li
Zhenming Liu
Yanhua Li
Mihai Cucuringu
34
4
0
01 Dec 2022
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
24
6
0
29 Sep 2022
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
G. Zhang
Hong-Ming Chiu
Richard Y. Zhang
24
10
0
24 Aug 2022
Low-Rank Mirror-Prox for Nonsmooth and Low-Rank Matrix Optimization Problems
Dan Garber
Atara Kaplan
21
0
0
23 Jun 2022
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
G. Zhang
S. Fattahi
Richard Y. Zhang
50
23
0
07 Jun 2022
Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography
J. Kim
Taha Toghani
César A. Uribe
Anastasios Kyrillidis
32
3
0
22 Mar 2022
Noisy Low-rank Matrix Optimization: Geometry of Local Minima and Convergence Rate
Ziye Ma
Somayeh Sojoudi
38
6
0
08 Mar 2022
Local Linear Convergence of Gradient Methods for Subspace Optimization via Strict Complementarity
Dan Garber
Ron Fisher
23
1
0
08 Feb 2022
Low-Rank Extragradient Method for Nonsmooth and Low-Rank Matrix Optimization Problems
Dan Garber
Atara Kaplan
21
5
0
08 Feb 2022
On Geometric Connections of Embedded and Quotient Geometries in Riemannian Fixed-rank Matrix Optimization
Yuetian Luo
Xudong Li
Xinmiao Zhang
19
6
0
23 Oct 2021
Factorization Approach for Low-complexity Matrix Completion Problems: Exponential Number of Spurious Solutions and Failure of Gradient Methods
Baturalp Yalcin
Haixiang Zhang
Javad Lavaei
Somayeh Sojoudi
23
13
0
19 Oct 2021
Large Learning Rate Tames Homogeneity: Convergence and Balancing Effect
Yuqing Wang
Minshuo Chen
T. Zhao
Molei Tao
AI4CE
57
40
0
07 Oct 2021
Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization
Yuetian Luo
Xudong Li
Anru R. Zhang
30
9
0
03 Aug 2021
Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix Factorization
Tian-Chun Ye
S. Du
21
46
0
27 Jun 2021
Momentum-inspired Low-Rank Coordinate Descent for Diagonally Constrained SDPs
J. Kim
Jose Antonio Lara Benitez
Taha Toghani
Cameron R. Wolfe
Zhiwei Zhang
Anastasios Kyrillidis
8
0
0
16 Jun 2021
Sharp Global Guarantees for Nonconvex Low-rank Recovery in the Noisy Overparameterized Regime
Richard Y. Zhang
44
25
0
21 Apr 2021
Fast quantum state reconstruction via accelerated non-convex programming
J. Kim
G. Kollias
A. Kalev
K. X. Wei
Anastasios Kyrillidis
25
14
0
14 Apr 2021
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix Factorization
Tianyi Liu
Yan Li
S. Wei
Enlu Zhou
T. Zhao
21
13
0
24 Feb 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
39
109
0
15 Feb 2021
On the computational and statistical complexity of over-parameterized matrix sensing
Jiacheng Zhuo
Jeongyeol Kwon
Nhat Ho
C. Caramanis
24
28
0
27 Jan 2021
Beyond Procrustes: Balancing-Free Gradient Descent for Asymmetric Low-Rank Matrix Sensing
Cong Ma
Yuanxin Li
Yuejie Chi
18
3
0
13 Jan 2021
On Stochastic Variance Reduced Gradient Method for Semidefinite Optimization
Jinshan Zeng
Yixuan Zha
Ke Ma
Yuan Yao
9
0
0
01 Jan 2021
Rank-One Measurements of Low-Rank PSD Matrices Have Small Feasible Sets
T. Roddenberry
Santiago Segarra
Anastasios Kyrillidis
21
0
0
17 Dec 2020
Recent Theoretical Advances in Non-Convex Optimization
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard A. Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
31
76
0
11 Dec 2020
A Nonconvex Framework for Structured Dynamic Covariance Recovery
Katherine Tsai
Mladen Kolar
Oluwasanmi Koyejo
19
3
0
11 Nov 2020
Differentiable Programming for Hyperspectral Unmixing using a Physics-based Dispersion Model
J. Janiczek
Parth Thaker
Gautam Dasarathy
C. Edwards
P. Christensen
Suren Jayasuriya
21
3
0
12 Jul 2020
How Many Samples is a Good Initial Point Worth in Low-rank Matrix Recovery?
G. Zhang
Richard Y. Zhang
12
16
0
12 Jun 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
27
113
0
18 May 2020
On the Sample Complexity and Optimization Landscape for Quadratic Feasibility Problems
Parth Thaker
Gautam Dasarathy
Angelia Nedić
21
5
0
04 Feb 2020
On the Convergence of Stochastic Gradient Descent with Low-Rank Projections for Convex Low-Rank Matrix Problems
Dan Garber
9
4
0
31 Jan 2020
Efficient Low-Rank Semidefinite Programming with Robust Loss Functions
Quanming Yao
Hansi Yang
En-Liang Hu
James T. Kwok
28
2
0
12 May 2019
On the Convergence of Projected-Gradient Methods with Low-Rank Projections for Smooth Convex Minimization over Trace-Norm Balls and Related Problems
Dan Garber
14
15
0
05 Feb 2019
Sharp Restricted Isometry Bounds for the Inexistence of Spurious Local Minima in Nonconvex Matrix Recovery
Richard Y. Zhang
Somayeh Sojoudi
Javad Lavaei
11
51
0
07 Jan 2019
A biconvex optimization for solving semidefinite programs via bilinear factorization
En-Liang Hu
9
0
0
03 Nov 2018
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview
Yuejie Chi
Yue M. Lu
Yuxin Chen
31
416
0
25 Sep 2018
Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes
C. J. Li
Zhaoran Wang
Han Liu
DiffM
23
18
0
29 Aug 2018
Implicit regularization and solution uniqueness in over-parameterized matrix sensing
Kelly Geyer
Anastasios Kyrillidis
A. Kalev
19
4
0
06 Jun 2018
Provably convergent acceleration in factored gradient descent with applications in matrix sensing
Tayo Ajayi
David Mildebrath
Anastasios Kyrillidis
Shashanka Ubaru
Georgios Kollias
K. Bouchard
13
1
0
01 Jun 2018
Simple and practical algorithms for
ℓ
p
\ell_p
ℓ
p
-norm low-rank approximation
Anastasios Kyrillidis
10
5
0
24 May 2018
Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow
Xiao Zhang
S. Du
Quanquan Gu
26
24
0
03 Mar 2018
1
2
Next