10
5

Simple and practical algorithms for p\ell_p-norm low-rank approximation

Anastasios Kyrillidis
Abstract

We propose practical algorithms for entrywise p\ell_p-norm low-rank approximation, for p=1p = 1 or p=p = \infty. The proposed framework, which is non-convex and gradient-based, is easy to implement and typically attains better approximations, faster, than state of the art. From a theoretical standpoint, we show that the proposed scheme can attain (1+ε)(1 + \varepsilon)-OPT approximations. Our algorithms are not hyperparameter-free: they achieve the desiderata only assuming algorithm's hyperparameters are known a priori---or are at least approximable. I.e., our theory indicates what problem quantities need to be known, in order to get a good solution within polynomial time, and does not contradict to recent inapproximabilty results, as in [46].

View on arXiv
Comments on this paper