ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.03917
  4. Cited By
Dropping Convexity for Faster Semi-definite Optimization
v1v2v3 (latest)

Dropping Convexity for Faster Semi-definite Optimization

14 September 2015
Srinadh Bhojanapalli
Anastasios Kyrillidis
Sujay Sanghavi
ArXiv (abs)PDFHTML

Papers citing "Dropping Convexity for Faster Semi-definite Optimization"

37 / 37 papers shown
Title
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
Salar Fattahi
Richard Y. Zhang
132
37
0
13 Apr 2025
Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent
Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent
Zhiyu Liu
Zhi Han
Yandong Tang
Xi-Le Zhao
Yao Wang
126
1
0
22 Jan 2024
Low-Rank Mirror-Prox for Nonsmooth and Low-Rank Matrix Optimization Problems
Low-Rank Mirror-Prox for Nonsmooth and Low-Rank Matrix Optimization Problems
Dan Garber
Atara Kaplan
68
0
0
23 Jun 2022
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
G. Zhang
Salar Fattahi
Richard Y. Zhang
137
23
0
07 Jun 2022
Low-Rank Extragradient Method for Nonsmooth and Low-Rank Matrix Optimization Problems
Low-Rank Extragradient Method for Nonsmooth and Low-Rank Matrix Optimization Problems
Dan Garber
Atara Kaplan
60
5
0
08 Feb 2022
A Geometric Analysis of Phase Retrieval
A Geometric Analysis of Phase Retrieval
Ju Sun
Qing Qu
John N. Wright
127
526
0
22 Feb 2016
Fast low-rank estimation by projected gradient descent: General
  statistical and algorithmic guarantees
Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees
Yudong Chen
Martin J. Wainwright
186
318
0
10 Sep 2015
Sparse PCA via Bipartite Matchings
Sparse PCA via Bipartite Matchings
Megasthenis Asteris
Dimitris Papailiopoulos
Anastasios Kyrillidis
A. Dimakis
70
27
0
04 Aug 2015
The local convexity of solving systems of quadratic equations
The local convexity of solving systems of quadratic equations
Christopher D. White
Sujay Sanghavi
Rachel A. Ward
57
72
0
25 Jun 2015
Global Convergence of a Grassmannian Gradient Descent Algorithm for
  Subspace Estimation
Global Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation
Dejiao Zhang
Laura Balzano
54
62
0
24 Jun 2015
A Convergent Gradient Descent Algorithm for Rank Minimization and
  Semidefinite Programming from Random Linear Measurements
A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements
Qinqing Zheng
John D. Lafferty
107
186
0
19 Jun 2015
A Riemannian low-rank method for optimization over semidefinite matrices
  with block-diagonal constraints
A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints
Nicolas Boumal
72
68
0
01 Jun 2015
Guaranteed Matrix Completion via Non-convex Factorization
Guaranteed Matrix Completion via Non-convex Factorization
Ruoyu Sun
Zhi-Quan Luo
112
453
0
28 Nov 2014
Global Convergence of Stochastic Gradient Descent for Some Non-convex
  Matrix Problems
Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems
Christopher De Sa
K. Olukotun
Christopher Ré
77
150
0
05 Nov 2014
Phase Retrieval via Wirtinger Flow: Theory and Algorithms
Phase Retrieval via Wirtinger Flow: Theory and Algorithms
Emmanuel Candes
Xiaodong Li
Mahdi Soltanolkotabi
199
1,288
0
03 Jul 2014
Convex Optimization: Algorithms and Complexity
Convex Optimization: Algorithms and Complexity
Sébastien Bubeck
75
112
0
20 May 2014
Scalable sparse covariance estimation via self-concordance
Scalable sparse covariance estimation via self-concordance
Anastasios Kyrillidis
Rabeeh Karimi Mahabadi
Quoc Tran-Dinh
Volkan Cevher
62
13
0
13 May 2014
Composite Self-Concordant Minimization
Composite Self-Concordant Minimization
Quoc Tran-Dinh
Anastasios Kyrillidis
Volkan Cevher
103
95
0
13 Aug 2013
Large-scale Multi-label Learning with Missing Labels
Large-scale Multi-label Learning with Missing Labels
Hsiang-Fu Yu
Prateek Jain
Purushottam Kar
Inderjit S. Dhillon
MQ
88
493
0
18 Jul 2013
Sparse Inverse Covariance Matrix Estimation Using Quadratic
  Approximation
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation
Cho-Jui Hsieh
Mátyás A. Sustik
Inderjit S. Dhillon
Pradeep Ravikumar
66
344
0
13 Jun 2013
Completing Any Low-rank Matrix, Provably
Completing Any Low-rank Matrix, Provably
Yudong Chen
Srinadh Bhojanapalli
Sujay Sanghavi
Rachel A. Ward
105
116
0
12 Jun 2013
Phase Retrieval using Alternating Minimization
Phase Retrieval using Alternating Minimization
Praneeth Netrapalli
Prateek Jain
Sujay Sanghavi
216
633
0
02 Jun 2013
Low-rank optimization for distance matrix completion
Low-rank optimization for distance matrix completion
Bamdev Mishra
Gilles Meyer
R. Sepulchre
82
60
0
24 Apr 2013
A proximal Newton framework for composite minimization: Graph learning
  without Cholesky decompositions and matrix inversions
A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions
Quoc Tran-Dinh
Anastasios Kyrillidis
Volkan Cevher
62
29
0
08 Jan 2013
Low-rank Matrix Completion using Alternating Minimization
Low-rank Matrix Completion using Alternating Minimization
Prateek Jain
Praneeth Netrapalli
Sujay Sanghavi
224
1,066
0
03 Dec 2012
Minimax sparse principal subspace estimation in high dimensions
Minimax sparse principal subspace estimation in high dimensions
Vincent Q. Vu
Jing Lei
135
195
0
02 Nov 2012
A Hybrid Algorithm for Convex Semidefinite Optimization
A Hybrid Algorithm for Convex Semidefinite Optimization
Soren Laue
78
63
0
18 Jun 2012
Convex Optimization without Projection Steps
Convex Optimization without Projection Steps
Martin Jaggi
106
39
0
04 Aug 2011
Large-Scale Convex Minimization with a Low-Rank Constraint
Large-Scale Convex Minimization with a Low-Rank Constraint
Shai Shalev-Shwartz
Alon Gonen
Ohad Shamir
88
160
0
08 Jun 2011
Universal low-rank matrix recovery from Pauli measurements
Universal low-rank matrix recovery from Pauli measurements
Yi-Kai Liu
96
127
0
14 Mar 2011
Localization from Incomplete Noisy Distance Measurements
Localization from Incomplete Noisy Distance Measurements
Adel Javanmard
Andrea Montanari
177
83
0
08 Mar 2011
Restricted strong convexity and weighted matrix completion: Optimal
  bounds with noise
Restricted strong convexity and weighted matrix completion: Optimal bounds with noise
S. Negahban
Martin J. Wainwright
199
522
0
10 Sep 2010
Templates for Convex Cone Problems with Applications to Sparse Signal
  Recovery
Templates for Convex Cone Problems with Applications to Sparse Signal Recovery
Stephen Becker
Emmanuel J. Candès
Michael C. Grant
98
681
0
10 Sep 2010
Guaranteed Rank Minimization via Singular Value Projection
Guaranteed Rank Minimization via Singular Value Projection
Raghu Meka
Prateek Jain
Inderjit S. Dhillon
183
554
0
30 Sep 2009
Matrix Completion from a Few Entries
Matrix Completion from a Few Entries
Raghunandan H. Keshavan
Andrea Montanari
Sewoong Oh
426
1,246
0
20 Jan 2009
High-Dimensional Graphical Model Selection Using $\ell_1$-Regularized
  Logistic Regression
High-Dimensional Graphical Model Selection Using ℓ1\ell_1ℓ1​-Regularized Logistic Regression
Pradeep Ravikumar
Martin J. Wainwright
John D. Lafferty
305
177
0
26 Apr 2008
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear
  Norm Minimization
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
Benjamin Recht
Maryam Fazel
P. Parrilo
416
3,768
0
28 Jun 2007
1