ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.01631
  4. Cited By
Stochastic gradient variational Bayes for gamma approximating
  distributions

Stochastic gradient variational Bayes for gamma approximating distributions

4 September 2015
David A. Knowles
    BDL
ArXivPDFHTML

Papers citing "Stochastic gradient variational Bayes for gamma approximating distributions"

13 / 13 papers shown
Title
DeepStability: A Study of Unstable Numerical Methods and Their Solutions
  in Deep Learning
DeepStability: A Study of Unstable Numerical Methods and Their Solutions in Deep Learning
Eliska Kloberdanz
Kyle G. Kloberdanz
Wei Le
30
15
0
07 Feb 2022
A Hierarchical Variational Neural Uncertainty Model for Stochastic Video
  Prediction
A Hierarchical Variational Neural Uncertainty Model for Stochastic Video Prediction
Moitreya Chatterjee
Narendra Ahuja
A. Cherian
UQCV
VGen
BDL
42
17
0
06 Oct 2021
Dirichlet Pruning for Neural Network Compression
Dirichlet Pruning for Neural Network Compression
Kamil Adamczewski
Mijung Park
27
3
0
10 Nov 2020
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
Hao Zhang
Bo Chen
Yulai Cong
D. Guo
Hongwei Liu
Mingyuan Zhou
BDL
24
27
0
15 Jun 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark W. Schmidt
Mohammad Emtiyaz Khan
BDL
39
35
0
24 Feb 2020
Variational Auto-encoder Based Bayesian Poisson Tensor Factorization for
  Sparse and Imbalanced Count Data
Variational Auto-encoder Based Bayesian Poisson Tensor Factorization for Sparse and Imbalanced Count Data
Yuan Jin
Ming Liu
Yunfeng Li
Ruohua Xu
Lan Du
Longxiang Gao
Yong Xiang
14
5
0
12 Oct 2019
Scalable Bayesian dynamic covariance modeling with variational Wishart
  and inverse Wishart processes
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
32
15
0
22 Jun 2019
Dirichlet Variational Autoencoder
Dirichlet Variational Autoencoder
Weonyoung Joo
Wonsung Lee
Sungrae Park
Il-Chul Moon
BDL
DRL
24
101
0
09 Jan 2019
Pathwise Derivatives Beyond the Reparameterization Trick
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
30
110
0
05 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
25
30
0
01 Jun 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Reparameterization Gradients through Acceptance-Rejection Sampling
  Algorithms
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
C. A. Naesseth
Francisco J. R. Ruiz
Scott W. Linderman
David M. Blei
BDL
29
107
0
18 Oct 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
38
709
0
02 Mar 2016
1