Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.01631
Cited By
Stochastic gradient variational Bayes for gamma approximating distributions
4 September 2015
David A. Knowles
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic gradient variational Bayes for gamma approximating distributions"
12 / 12 papers shown
Title
DeepStability: A Study of Unstable Numerical Methods and Their Solutions in Deep Learning
Eliska Kloberdanz
Kyle G. Kloberdanz
Wei Le
30
15
0
07 Feb 2022
A Hierarchical Variational Neural Uncertainty Model for Stochastic Video Prediction
Moitreya Chatterjee
Narendra Ahuja
A. Cherian
UQCV
VGen
BDL
42
17
0
06 Oct 2021
Dirichlet Pruning for Neural Network Compression
Kamil Adamczewski
Mijung Park
27
3
0
10 Nov 2020
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
Hao Zhang
Bo Chen
Yulai Cong
D. Guo
Hongwei Liu
Mingyuan Zhou
BDL
24
27
0
15 Jun 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark W. Schmidt
Mohammad Emtiyaz Khan
BDL
39
35
0
24 Feb 2020
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
32
15
0
22 Jun 2019
Dirichlet Variational Autoencoder
Weonyoung Joo
Wonsung Lee
Sungrae Park
Il-Chul Moon
BDL
DRL
19
101
0
09 Jan 2019
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
30
110
0
05 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
25
30
0
01 Jun 2018
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
C. A. Naesseth
Francisco J. R. Ruiz
Scott W. Linderman
David M. Blei
BDL
25
107
0
18 Oct 2016
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
38
709
0
02 Mar 2016
1