Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.01240
Cited By
v1
v2 (latest)
Train faster, generalize better: Stability of stochastic gradient descent
3 September 2015
Moritz Hardt
Benjamin Recht
Y. Singer
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Train faster, generalize better: Stability of stochastic gradient descent"
50 / 679 papers shown
Title
Understanding the Generalization Ability of Deep Learning Algorithms: A Kernelized Renyi's Entropy Perspective
Yuxin Dong
Tieliang Gong
Hao Chen
Chen Li
75
3
0
02 May 2023
Oversampling Higher-Performing Minorities During Machine Learning Model Training Reduces Adverse Impact Slightly but Also Reduces Model Accuracy
Louis Hickman
J. Kuruzovich
Vincent Ng
Kofi Arhin
Danielle Wilson
36
14
0
27 Apr 2023
Learning Trajectories are Generalization Indicators
Jingwen Fu
Zhizheng Zhang
Dacheng Yin
Yan Lu
Nanning Zheng
AI4CE
90
3
0
25 Apr 2023
AdapterGNN: Parameter-Efficient Fine-Tuning Improves Generalization in GNNs
Shengrui Li
Xueting Han
Jing Bai
AI4CE
45
12
0
19 Apr 2023
Differentially Private Stochastic Convex Optimization in (Non)-Euclidean Space Revisited
Jinyan Su
Changhong Zhao
Di Wang
78
5
0
31 Mar 2023
Lipschitzness Effect of a Loss Function on Generalization Performance of Deep Neural Networks Trained by Adam and AdamW Optimizers
M. Lashkari
Amin Gheibi
112
3
0
29 Mar 2023
Lower Generalization Bounds for GD and SGD in Smooth Stochastic Convex Optimization
Peiyuan Zhang
Jiaye Teng
J.N. Zhang
78
4
0
19 Mar 2023
Neural Frailty Machine: Beyond proportional hazard assumption in neural survival regressions
Ruofan Wu
Jiawei Qiao
Mingzhe Wu
Wen Yu
M. Zheng
Tengfei Liu
Tianyi Zhang
Weiqiang Wang
61
1
0
18 Mar 2023
Benign Overfitting for Two-layer ReLU Convolutional Neural Networks
Yiwen Kou
Zi-Yuan Chen
Yuanzhou Chen
Quanquan Gu
MLT
94
17
0
07 Mar 2023
Gradient Norm Aware Minimization Seeks First-Order Flatness and Improves Generalization
Xingxuan Zhang
Renzhe Xu
Han Yu
Hao Zou
Peng Cui
83
42
0
03 Mar 2023
Learning to Generalize Provably in Learning to Optimize
Junjie Yang
Tianlong Chen
Mingkang Zhu
Fengxiang He
Dacheng Tao
Yitao Liang
Zhangyang Wang
86
7
0
22 Feb 2023
Stability-based Generalization Analysis for Mixtures of Pointwise and Pairwise Learning
Jiahuan Wang
Jun Chen
Hao Chen
Bin Gu
Weifu Li
Xinwei Tang
MLT
70
2
0
20 Feb 2023
On the Stability and Generalization of Triplet Learning
Jun Chen
Hao Chen
Xue Jiang
Bin Gu
Weifu Li
Tieliang Gong
Feng Zheng
59
4
0
20 Feb 2023
Why Is Public Pretraining Necessary for Private Model Training?
Arun Ganesh
Mahdi Haghifam
Milad Nasr
Sewoong Oh
Thomas Steinke
Om Thakkar
Abhradeep Thakurta
Lun Wang
70
39
0
19 Feb 2023
Generalization and Stability of Interpolating Neural Networks with Minimal Width
Hossein Taheri
Christos Thrampoulidis
105
16
0
18 Feb 2023
Cyclic and Randomized Stepsizes Invoke Heavier Tails in SGD than Constant Stepsize
Mert Gurbuzbalaban
Yuanhan Hu
Umut Simsekli
Lingjiong Zhu
LRM
95
1
0
10 Feb 2023
Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion
Haotian Ju
Dongyue Li
Aneesh Sharma
Hongyang R. Zhang
70
41
0
09 Feb 2023
U-Clip: On-Average Unbiased Stochastic Gradient Clipping
Bryn Elesedy
Marcus Hutter
64
1
0
06 Feb 2023
Efficient Gradient Approximation Method for Constrained Bilevel Optimization
Siyuan Xu
Minghui Zhu
78
20
0
03 Feb 2023
Bagging Provides Assumption-free Stability
Jake A. Soloff
Rina Foygel Barber
Rebecca Willett
69
11
0
30 Jan 2023
Implicit Regularization for Group Sparsity
Jiangyuan Li
THANH VAN NGUYEN
Chinmay Hegde
Raymond K. W. Wong
96
9
0
29 Jan 2023
On the Lipschitz Constant of Deep Networks and Double Descent
Matteo Gamba
Hossein Azizpour
Mårten Björkman
110
7
0
28 Jan 2023
Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions
Anant Raj
Lingjiong Zhu
Mert Gurbuzbalaban
Umut Simsekli
86
16
0
27 Jan 2023
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
Jikai Jin
Zhiyuan Li
Kaifeng Lyu
S. Du
Jason D. Lee
MLT
118
37
0
27 Jan 2023
A Stability Analysis of Fine-Tuning a Pre-Trained Model
Z. Fu
Anthony Man-Cho So
Nigel Collier
74
3
0
24 Jan 2023
Stretched and measured neural predictions of complex network dynamics
V. Vasiliauskaite
Nino Antulov-Fantulin
82
1
0
12 Jan 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
93
2
0
09 Jan 2023
Resampling Sensitivity of High-Dimensional PCA
Haoyu Wang
62
0
0
30 Dec 2022
Limitations of Information-Theoretic Generalization Bounds for Gradient Descent Methods in Stochastic Convex Optimization
Mahdi Haghifam
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
Daniel M. Roy
Gintare Karolina Dziugaite
93
19
0
27 Dec 2022
Iterative regularization in classification via hinge loss diagonal descent
Vassilis Apidopoulos
T. Poggio
Lorenzo Rosasco
S. Villa
67
2
0
24 Dec 2022
On the Overlooked Structure of Stochastic Gradients
Zeke Xie
Qian-Yuan Tang
Mingming Sun
P. Li
98
6
0
05 Dec 2022
On the Effectiveness of Parameter-Efficient Fine-Tuning
Z. Fu
Haoran Yang
Anthony Man-Cho So
Wai Lam
Lidong Bing
Nigel Collier
80
162
0
28 Nov 2022
SIFU: Sequential Informed Federated Unlearning for Efficient and Provable Client Unlearning in Federated Optimization
Yann Fraboni
Martin Van Waerebeke
Kevin Scaman
Richard Vidal
Laetitia Kameni
Marco Lorenzi
FedML
MU
116
14
0
21 Nov 2022
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of SGD via Training Trajectories and via Terminal States
Ziqiao Wang
Yongyi Mao
111
12
0
19 Nov 2022
SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates
Zachary Frangella
Pratik Rathore
Shipu Zhao
Madeleine Udell
55
6
0
16 Nov 2022
On the Algorithmic Stability and Generalization of Adaptive Optimization Methods
Han Nguyen
Hai Pham
Sashank J. Reddi
Barnabas Poczos
ODL
AI4CE
101
2
0
08 Nov 2022
Do highly over-parameterized neural networks generalize since bad solutions are rare?
Julius Martinetz
T. Martinetz
91
1
0
07 Nov 2022
Distributed DP-Helmet: Scalable Differentially Private Non-interactive Averaging of Single Layers
Moritz Kirschte
Sebastian Meiser
Saman Ardalan
Esfandiar Mohammadi
FedML
76
0
0
03 Nov 2022
Optimal Algorithms for Stochastic Complementary Composite Minimization
Alexandre d’Aspremont
Cristóbal Guzmán
Clément Lezane
64
3
0
03 Nov 2022
Variance reduced Shapley value estimation for trustworthy data valuation
Mengmeng Wu
R. Jia
Changle Lin
Wei Huang
Xiangyu Chang
TDI
127
15
0
30 Oct 2022
Chaos Theory and Adversarial Robustness
Jonathan S. Kent
AAML
74
0
0
20 Oct 2022
Stochastic Differentially Private and Fair Learning
Andrew Lowy
Devansh Gupta
Meisam Razaviyayn
FaML
FedML
61
14
0
17 Oct 2022
FedCross: Towards Accurate Federated Learning via Multi-Model Cross-Aggregation
Ming Hu
Peiheng Zhou
Zhihao Yue
Zhiwei Ling
Yihao Huang
Anran Li
Yang Liu
Xiang Lian
Mingsong Chen
FedML
79
14
0
15 Oct 2022
On the Importance of Gradient Norm in PAC-Bayesian Bounds
Itai Gat
Yossi Adi
Alex Schwing
Tamir Hazan
BDL
97
6
0
12 Oct 2022
On Stability and Generalization of Bilevel Optimization Problem
Meng Ding
Ming Lei
Yunwen Lei
Di Wang
Jinhui Xu
103
1
0
03 Oct 2022
Stability Analysis and Generalization Bounds of Adversarial Training
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Jue Wang
Zhimin Luo
AAML
85
31
0
03 Oct 2022
Adaptive Smoothness-weighted Adversarial Training for Multiple Perturbations with Its Stability Analysis
Jiancong Xiao
Zeyu Qin
Yanbo Fan
Baoyuan Wu
Jue Wang
Zhimin Luo
AAML
131
7
0
02 Oct 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
379
50
0
29 Sep 2022
Exploring the Algorithm-Dependent Generalization of AUPRC Optimization with List Stability
Peisong Wen
Qianqian Xu
Zhiyong Yang
Yuan He
Qingming Huang
138
10
0
27 Sep 2022
On the Stability Analysis of Open Federated Learning Systems
Youbang Sun
H. Fernando
Tianyi Chen
Shahin Shahrampour
FedML
79
1
0
25 Sep 2022
Previous
1
2
3
4
5
...
12
13
14
Next