Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.01240
Cited By
Train faster, generalize better: Stability of stochastic gradient descent
3 September 2015
Moritz Hardt
Benjamin Recht
Y. Singer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Train faster, generalize better: Stability of stochastic gradient descent"
50 / 275 papers shown
Title
The Deep Bootstrap Framework: Good Online Learners are Good Offline Generalizers
Preetum Nakkiran
Behnam Neyshabur
Hanie Sedghi
OffRL
29
11
0
16 Oct 2020
Deep generative demixing: Recovering Lipschitz signals from noisy subgaussian mixtures
Aaron Berk
19
0
0
13 Oct 2020
How Does Mixup Help With Robustness and Generalization?
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
Amirata Ghorbani
James Zou
AAML
47
244
0
09 Oct 2020
Learning Optimal Representations with the Decodable Information Bottleneck
Yann Dubois
Douwe Kiela
D. Schwab
Ramakrishna Vedantam
31
43
0
27 Sep 2020
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
30
306
0
24 Sep 2020
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
Tianle Cai
Shengjie Luo
Keyulu Xu
Di He
Tie-Yan Liu
Liwei Wang
GNN
32
160
0
07 Sep 2020
Hybrid Differentially Private Federated Learning on Vertically Partitioned Data
Chang Wang
Jian Liang
Mingkai Huang
Bing Bai
Kun Bai
Hao Li
FedML
23
39
0
06 Sep 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
39
50
0
08 Jul 2020
Training (Overparametrized) Neural Networks in Near-Linear Time
Jan van den Brand
Binghui Peng
Zhao Song
Omri Weinstein
ODL
34
83
0
20 Jun 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
Federated Accelerated Stochastic Gradient Descent
Honglin Yuan
Tengyu Ma
FedML
30
172
0
16 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
Jason D. Lee
Tengyu Ma
32
94
0
15 Jun 2020
Fine-Grained Analysis of Stability and Generalization for Stochastic Gradient Descent
Yunwen Lei
Yiming Ying
MLT
40
126
0
15 Jun 2020
Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses
Raef Bassily
Vitaly Feldman
Cristóbal Guzmán
Kunal Talwar
MLT
24
192
0
12 Jun 2020
Speedy Performance Estimation for Neural Architecture Search
Binxin Ru
Clare Lyle
Lisa Schut
M. Fil
Mark van der Wilk
Y. Gal
20
36
0
08 Jun 2020
Bayesian Neural Network via Stochastic Gradient Descent
Abhinav Sagar
UQCV
BDL
10
2
0
04 Jun 2020
Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Vitaly Feldman
Tomer Koren
Kunal Talwar
22
204
0
10 May 2020
Detached Error Feedback for Distributed SGD with Random Sparsification
An Xu
Heng-Chiao Huang
41
9
0
11 Apr 2020
Forgetting Outside the Box: Scrubbing Deep Networks of Information Accessible from Input-Output Observations
Aditya Golatkar
Alessandro Achille
Stefano Soatto
MU
OOD
27
189
0
05 Mar 2020
Understanding Self-Training for Gradual Domain Adaptation
Ananya Kumar
Tengyu Ma
Percy Liang
CLL
TTA
28
228
0
26 Feb 2020
Coherent Gradients: An Approach to Understanding Generalization in Gradient Descent-based Optimization
S. Chatterjee
ODL
OOD
11
51
0
25 Feb 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
27
181
0
24 Feb 2020
Data Heterogeneity Differential Privacy: From Theory to Algorithm
Yilin Kang
Jian Li
Yong Liu
Weiping Wang
30
1
0
20 Feb 2020
Performative Prediction
Juan C. Perdomo
Tijana Zrnic
Celestine Mendler-Dünner
Moritz Hardt
39
306
0
16 Feb 2020
Statistical Learning with Conditional Value at Risk
Tasuku Soma
Yuichi Yoshida
10
38
0
14 Feb 2020
A Diffusion Theory For Deep Learning Dynamics: Stochastic Gradient Descent Exponentially Favors Flat Minima
Zeke Xie
Issei Sato
Masashi Sugiyama
ODL
28
17
0
10 Feb 2020
On the distance between two neural networks and the stability of learning
Jeremy Bernstein
Arash Vahdat
Yisong Yue
Xuan Li
ODL
200
57
0
09 Feb 2020
Reasoning About Generalization via Conditional Mutual Information
Thomas Steinke
Lydia Zakynthinou
23
160
0
24 Jan 2020
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Raffaello Camoriano
39
1
0
11 Dec 2019
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
16
1,200
0
20 Nov 2019
Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks
Difan Zou
Ziniu Hu
Yewen Wang
Song Jiang
Yizhou Sun
Quanquan Gu
GNN
40
278
0
17 Nov 2019
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
115
148
0
06 Nov 2019
Sharper bounds for uniformly stable algorithms
Olivier Bousquet
Yegor Klochkov
Nikita Zhivotovskiy
23
120
0
17 Oct 2019
The Implicit Regularization of Ordinary Least Squares Ensembles
Daniel LeJeune
Hamid Javadi
Richard G. Baraniuk
18
43
0
10 Oct 2019
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
38
85
0
09 Oct 2019
Partial differential equation regularization for supervised machine learning
Jillian R. Fisher
29
2
0
03 Oct 2019
On-line Non-Convex Constrained Optimization
Olivier Massicot
Jakub Mareˇcek
19
13
0
16 Sep 2019
Private Stochastic Convex Optimization with Optimal Rates
Raef Bassily
Vitaly Feldman
Kunal Talwar
Abhradeep Thakurta
23
237
0
27 Aug 2019
Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions
Matthew Faw
Rajat Sen
Karthikeyan Shanmugam
C. Caramanis
Sanjay Shakkottai
36
3
0
23 Jul 2019
Generalization Guarantees for Neural Networks via Harnessing the Low-rank Structure of the Jacobian
Samet Oymak
Zalan Fabian
Mingchen Li
Mahdi Soltanolkotabi
MLT
21
88
0
12 Jun 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
61
483
0
12 Jun 2019
Importance Resampling for Off-policy Prediction
M. Schlegel
Wesley Chung
Daniel Graves
Jian Qian
Martha White
OffRL
14
41
0
11 Jun 2019
Implicit Regularization of Accelerated Methods in Hilbert Spaces
Nicolò Pagliana
Lorenzo Rosasco
13
18
0
30 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
SGD on Neural Networks Learns Functions of Increasing Complexity
Preetum Nakkiran
Gal Kaplun
Dimitris Kalimeris
Tristan Yang
Benjamin L. Edelman
Fred Zhang
Boaz Barak
MLT
28
236
0
28 May 2019
Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction
N. Benjamin Erichson
Michael Muehlebach
Michael W. Mahoney
AI4CE
PINN
17
140
0
26 May 2019
Explicitizing an Implicit Bias of the Frequency Principle in Two-layer Neural Networks
Tao Luo
Zhi-Qin John Xu
Yaoyu Zhang
Zheng Ma
MLT
AI4CE
39
38
0
24 May 2019
Orthogonal Deep Neural Networks
Kui Jia
Shuai Li
Yuxin Wen
Tongliang Liu
Dacheng Tao
39
132
0
15 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
25
109
0
09 May 2019
Stochastic Iterative Hard Thresholding for Graph-structured Sparsity Optimization
Baojian Zhou
F. Chen
Yiming Ying
29
7
0
09 May 2019
Previous
1
2
3
4
5
6
Next