Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1507.02000
Cited By
An optimal randomized incremental gradient method
8 July 2015
Guanghui Lan
Yi Zhou
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An optimal randomized incremental gradient method"
35 / 35 papers shown
Title
Dynamic Anisotropic Smoothing for Noisy Derivative-Free Optimization
S. Reifenstein
T. Leleu
Yoshihisa Yamamoto
48
1
0
02 May 2024
A simple uniformly optimal method without line search for convex optimization
Tianjiao Li
Guanghui Lan
26
20
0
16 Oct 2023
DualFL: A Duality-based Federated Learning Algorithm with Communication Acceleration in the General Convex Regime
Jongho Park
Jinchao Xu
FedML
60
1
0
17 May 2023
Stochastic Distributed Optimization under Average Second-order Similarity: Algorithms and Analysis
Dachao Lin
Yuze Han
Haishan Ye
Zhihua Zhang
22
11
0
15 Apr 2023
A principled framework for the design and analysis of token algorithms
Hadrien Hendrikx
FedML
24
13
0
30 May 2022
Perseus: A Simple and Optimal High-Order Method for Variational Inequalities
Tianyi Lin
Michael I. Jordan
25
10
0
06 May 2022
No-Regret Dynamics in the Fenchel Game: A Unified Framework for Algorithmic Convex Optimization
Jun-Kun Wang
Jacob D. Abernethy
Kfir Y. Levy
24
21
0
22 Nov 2021
Stochastic Primal-Dual Deep Unrolling
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
24
4
0
19 Oct 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
43
14
0
21 Mar 2021
Personalized Federated Learning: A Unified Framework and Universal Optimization Techniques
Filip Hanzely
Boxin Zhao
Mladen Kolar
FedML
27
52
0
19 Feb 2021
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
31
25
0
04 Jan 2021
Optimal Algorithms for Convex Nested Stochastic Composite Optimization
Zhe Zhang
Guanghui Lan
22
28
0
19 Nov 2020
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
47
186
0
05 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
32
0
0
26 Aug 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
31
125
0
25 Aug 2020
Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization
Chaobing Song
Yong Jiang
Yi Ma
53
23
0
18 Jun 2020
Optimal Complexity in Decentralized Training
Yucheng Lu
Christopher De Sa
38
72
0
15 Jun 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
35
17
0
11 Feb 2020
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
25
30
0
22 Oct 2019
Stochastic First-order Methods for Convex and Nonconvex Functional Constrained Optimization
Digvijay Boob
Qi Deng
Guanghui Lan
41
92
0
07 Aug 2019
A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints
Qihang Lin
Selvaprabu Nadarajah
Negar Soheili
Tianbao Yang
27
13
0
07 Aug 2019
Asynchronous decentralized accelerated stochastic gradient descent
Guanghui Lan
Yi Zhou
11
15
0
24 Sep 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Lower error bounds for the stochastic gradient descent optimization algorithm: Sharp convergence rates for slowly and fast decaying learning rates
Arnulf Jentzen
Philippe von Wurstemberger
73
31
0
22 Mar 2018
A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
39
116
0
13 Feb 2018
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
44
52
0
12 Feb 2018
Communication-Efficient Algorithms for Decentralized and Stochastic Optimization
Guanghui Lan
Soomin Lee
Yi Zhou
40
218
0
14 Jan 2017
Sketching Meets Random Projection in the Dual: A Provable Recovery Algorithm for Big and High-dimensional Data
Jialei Wang
J. Lee
M. Mahdavi
Mladen Kolar
Nathan Srebro
21
50
0
10 Oct 2016
Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure
A. Bietti
Julien Mairal
44
36
0
04 Oct 2016
Dimension-Free Iteration Complexity of Finite Sum Optimization Problems
Yossi Arjevani
Ohad Shamir
16
24
0
30 Jun 2016
Tight Complexity Bounds for Optimizing Composite Objectives
Blake E. Woodworth
Nathan Srebro
26
185
0
25 May 2016
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
20
54
0
23 May 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
15
575
0
18 Mar 2016
A Simple Practical Accelerated Method for Finite Sums
Aaron Defazio
22
120
0
08 Feb 2016
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
Yuchen Zhang
Xiao Lin
43
261
0
10 Sep 2014
1