ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.00814
  4. Cited By
Incentivizing Exploration In Reinforcement Learning With Deep Predictive
  Models

Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models

3 July 2015
Bradly C. Stadie
Sergey Levine
Pieter Abbeel
ArXivPDFHTML

Papers citing "Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models"

50 / 115 papers shown
Title
Anti-Concentrated Confidence Bonuses for Scalable Exploration
Anti-Concentrated Confidence Bonuses for Scalable Exploration
Jordan T. Ash
Cyril Zhang
Surbhi Goel
A. Krishnamurthy
Sham Kakade
48
6
0
21 Oct 2021
Exploration in Deep Reinforcement Learning: From Single-Agent to
  Multiagent Domain
Exploration in Deep Reinforcement Learning: From Single-Agent to Multiagent Domain
Jianye Hao
Tianpei Yang
Hongyao Tang
Chenjia Bai
Jinyi Liu
Zhaopeng Meng
Peng Liu
Zhen Wang
OffRL
41
94
0
14 Sep 2021
A Survey of Exploration Methods in Reinforcement Learning
A Survey of Exploration Methods in Reinforcement Learning
Susan Amin
Maziar Gomrokchi
Harsh Satija
H. V. Hoof
Doina Precup
OffRL
37
80
0
01 Sep 2021
Human-Level Reinforcement Learning through Theory-Based Modeling,
  Exploration, and Planning
Human-Level Reinforcement Learning through Theory-Based Modeling, Exploration, and Planning
Pedro Tsividis
J. Loula
Jake Burga
Nathan Foss
Andres Campero
Thomas Pouncy
S. Gershman
J. Tenenbaum
LM&Ro
24
44
0
27 Jul 2021
Cooperative Exploration for Multi-Agent Deep Reinforcement Learning
Cooperative Exploration for Multi-Agent Deep Reinforcement Learning
Iou-Jen Liu
Unnat Jain
Raymond A. Yeh
Alex Schwing
47
104
0
23 Jul 2021
UAV-assisted Online Machine Learning over Multi-Tiered Networks: A
  Hierarchical Nested Personalized Federated Learning Approach
UAV-assisted Online Machine Learning over Multi-Tiered Networks: A Hierarchical Nested Personalized Federated Learning Approach
Su Wang
Seyyedali Hosseinalipour
M. Gorlatova
Christopher G. Brinton
M. Chiang
43
36
0
29 Jun 2021
Learning from Demonstration without Demonstrations
Learning from Demonstration without Demonstrations
Tom Blau
Gilad Francis
Philippe Morere
OffRL
27
1
0
17 Jun 2021
Exploration and preference satisfaction trade-off in reward-free
  learning
Exploration and preference satisfaction trade-off in reward-free learning
Noor Sajid
P. Tigas
Alexey Zakharov
Zafeirios Fountas
Karl J. Friston
27
20
0
08 Jun 2021
Online reinforcement learning with sparse rewards through an active
  inference capsule
Online reinforcement learning with sparse rewards through an active inference capsule
Alejandro Daniel Noel
C. V. Hoof
Beren Millidge
OffRL
18
7
0
04 Jun 2021
Rapid Exploration for Open-World Navigation with Latent Goal Models
Rapid Exploration for Open-World Navigation with Latent Goal Models
Dhruv Shah
Benjamin Eysenbach
G. Kahn
Nicholas Rhinehart
Sergey Levine
34
70
0
12 Apr 2021
Decoupled Exploration and Exploitation Policies for Sample-Efficient
  Reinforcement Learning
Decoupled Exploration and Exploitation Policies for Sample-Efficient Reinforcement Learning
William F. Whitney
Michael Bloesch
Jost Tobias Springenberg
A. Abdolmaleki
Kyunghyun Cho
Martin Riedmiller
OffRL
29
13
0
23 Jan 2021
BeBold: Exploration Beyond the Boundary of Explored Regions
BeBold: Exploration Beyond the Boundary of Explored Regions
Tianjun Zhang
Huazhe Xu
Xiaolong Wang
Yi Wu
Kurt Keutzer
Joseph E. Gonzalez
Yuandong Tian
36
40
0
15 Dec 2020
Latent World Models For Intrinsically Motivated Exploration
Latent World Models For Intrinsically Motivated Exploration
Aleksandr Ermolov
N. Sebe
36
25
0
05 Oct 2020
Novelty Search in Representational Space for Sample Efficient
  Exploration
Novelty Search in Representational Space for Sample Efficient Exploration
Ruo Yu Tao
Vincent François-Lavet
Joelle Pineau
35
43
0
28 Sep 2020
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Andres Campero
Roberta Raileanu
Heinrich Küttler
J. Tenenbaum
Tim Rocktaschel
Edward Grefenstette
40
125
0
22 Jun 2020
Non-local Policy Optimization via Diversity-regularized Collaborative
  Exploration
Non-local Policy Optimization via Diversity-regularized Collaborative Exploration
Zhenghao Peng
Hao Sun
Bolei Zhou
18
18
0
14 Jun 2020
First return, then explore
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
352
0
27 Apr 2020
Disentangling Controllable Object through Video Prediction Improves
  Visual Reinforcement Learning
Disentangling Controllable Object through Video Prediction Improves Visual Reinforcement Learning
Yuanyi Zhong
Alex Schwing
Jian Peng
DRL
22
5
0
21 Feb 2020
PANTHER: A Programmable Architecture for Neural Network Training
  Harnessing Energy-efficient ReRAM
PANTHER: A Programmable Architecture for Neural Network Training Harnessing Energy-efficient ReRAM
Aayush Ankit
I. E. Hajj
S. R. Chalamalasetti
S. Agarwal
M. Marinella
M. Foltin
J. Strachan
D. Milojicic
Wen-mei W. Hwu
Kaushik Roy
21
65
0
24 Dec 2019
Scaling active inference
Scaling active inference
Alexander Tschantz
Manuel Baltieri
A. Seth
Christopher L. Buckley
BDL
AI4CE
19
68
0
24 Nov 2019
Receding Horizon Curiosity
Receding Horizon Curiosity
M. Schultheis
Boris Belousov
Hany Abdulsamad
Jan Peters
25
15
0
08 Oct 2019
Emergent Tool Use From Multi-Agent Autocurricula
Emergent Tool Use From Multi-Agent Autocurricula
Bowen Baker
I. Kanitscheider
Todor Markov
Yi Wu
Glenn Powell
Bob McGrew
Igor Mordatch
LRM
54
647
0
17 Sep 2019
Reinforcement Learning in Healthcare: A Survey
Reinforcement Learning in Healthcare: A Survey
Chao Yu
Jiming Liu
S. Nemati
LM&MA
OffRL
28
551
0
22 Aug 2019
A survey on intrinsic motivation in reinforcement learning
A survey on intrinsic motivation in reinforcement learning
A. Aubret
L. Matignon
S. Hassas
AI4CE
26
144
0
19 Aug 2019
Deep Active Inference as Variational Policy Gradients
Deep Active Inference as Variational Policy Gradients
Beren Millidge
BDL
32
103
0
08 Jul 2019
Learning-Driven Exploration for Reinforcement Learning
Learning-Driven Exploration for Reinforcement Learning
Muhammad Usama
D. Chang
32
10
0
17 Jun 2019
Efficient Exploration via State Marginal Matching
Efficient Exploration via State Marginal Matching
Lisa Lee
Benjamin Eysenbach
Emilio Parisotto
Eric Xing
Sergey Levine
Ruslan Salakhutdinov
35
242
0
12 Jun 2019
Estimating Risk and Uncertainty in Deep Reinforcement Learning
Estimating Risk and Uncertainty in Deep Reinforcement Learning
W. Clements
B. V. Delft
Benoît-Marie Robaglia
Reda Bahi Slaoui
Sébastien Toth
35
96
0
23 May 2019
Learning Gentle Object Manipulation with Curiosity-Driven Deep
  Reinforcement Learning
Learning Gentle Object Manipulation with Curiosity-Driven Deep Reinforcement Learning
Sandy H. Huang
Martina Zambelli
Jackie Kay
M. Martins
Yuval Tassa
P. Pilarski
R. Hadsell
31
50
0
20 Mar 2019
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning
Vitchyr H. Pong
Murtaza Dalal
Steven Lin
Ashvin Nair
Shikhar Bahl
Sergey Levine
OffRL
SSL
38
269
0
08 Mar 2019
World Discovery Models
World Discovery Models
M. G. Azar
Bilal Piot
Bernardo Avila-Pires
Jean-Bastien Grill
Florent Altché
Rémi Munos
23
26
0
20 Feb 2019
Curiosity-Driven Experience Prioritization via Density Estimation
Curiosity-Driven Experience Prioritization via Density Estimation
Rui Zhao
Volker Tresp
32
54
0
20 Feb 2019
Go-Explore: a New Approach for Hard-Exploration Problems
Go-Explore: a New Approach for Hard-Exploration Problems
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
AI4TS
24
363
0
30 Jan 2019
Never Forget: Balancing Exploration and Exploitation via Learning
  Optical Flow
Never Forget: Balancing Exploration and Exploitation via Learning Optical Flow
Hsuan-Kung Yang
Po-Han Chiang
Kuan-Wei Ho
Min-Fong Hong
Chun-Yi Lee
35
7
0
24 Jan 2019
Amplifying the Imitation Effect for Reinforcement Learning of UCAV's
  Mission Execution
Amplifying the Imitation Effect for Reinforcement Learning of UCAV's Mission Execution
G. Lee
Chang Ouk Kim
18
4
0
17 Jan 2019
Exploration Conscious Reinforcement Learning Revisited
Exploration Conscious Reinforcement Learning Revisited
Lior Shani
Yonathan Efroni
Shie Mannor
24
2
0
13 Dec 2018
Learning to Learn How to Learn: Self-Adaptive Visual Navigation Using
  Meta-Learning
Learning to Learn How to Learn: Self-Adaptive Visual Navigation Using Meta-Learning
Mitchell Wortsman
Kiana Ehsani
Mohammad Rastegari
Ali Farhadi
Roozbeh Mottaghi
SSL
27
222
0
03 Dec 2018
Scaling All-Goals Updates in Reinforcement Learning Using Convolutional
  Neural Networks
Scaling All-Goals Updates in Reinforcement Learning Using Convolutional Neural Networks
Fabio Pardo
Vitaly Levdik
Petar Kormushev
25
4
0
06 Oct 2018
Episodic Curiosity through Reachability
Episodic Curiosity through Reachability
Nikolay Savinov
Anton Raichuk
Raphaël Marinier
Damien Vincent
Marc Pollefeys
Timothy Lillicrap
Sylvain Gelly
17
267
0
04 Oct 2018
Model-Based Regularization for Deep Reinforcement Learning with
  Transcoder Networks
Model-Based Regularization for Deep Reinforcement Learning with Transcoder Networks
Felix Leibfried
Peter Vrancx
OffRL
14
7
0
06 Sep 2018
Unsupervised Meta-Learning for Reinforcement Learning
Unsupervised Meta-Learning for Reinforcement Learning
Abhishek Gupta
Benjamin Eysenbach
Chelsea Finn
Sergey Levine
SSL
OffRL
54
106
0
12 Jun 2018
Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement
  Learning with Trajectory Embeddings
Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings
John D. Co-Reyes
YuXuan Liu
Abhishek Gupta
Benjamin Eysenbach
Pieter Abbeel
Sergey Levine
SSL
BDL
AIFin
37
142
0
07 Jun 2018
Learning Self-Imitating Diverse Policies
Learning Self-Imitating Diverse Policies
Tanmay Gangwani
Qiang Liu
Jian Peng
29
65
0
25 May 2018
Some Considerations on Learning to Explore via Meta-Reinforcement
  Learning
Some Considerations on Learning to Explore via Meta-Reinforcement Learning
Bradly C. Stadie
Ge Yang
Rein Houthooft
Xi Chen
Yan Duan
Yuhuai Wu
Pieter Abbeel
Ilya Sutskever
LRM
40
116
0
03 Mar 2018
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden M. Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
254
888
0
11 Nov 2017
Exploration in Feature Space for Reinforcement Learning
Exploration in Feature Space for Reinforcement Learning
S. N. Sasikumar
60
4
0
05 Oct 2017
Revisiting the Arcade Learning Environment: Evaluation Protocols and
  Open Problems for General Agents
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents
Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
J. Veness
Matthew J. Hausknecht
Michael Bowling
39
546
0
18 Sep 2017
A Brief Survey of Deep Reinforcement Learning
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
65
2,780
0
19 Aug 2017
Count-Based Exploration in Feature Space for Reinforcement Learning
Count-Based Exploration in Feature Space for Reinforcement Learning
Jarryd Martin
S. N. Sasikumar
Tom Everitt
Marcus Hutter
24
122
0
25 Jun 2017
Parameter Space Noise for Exploration
Parameter Space Noise for Exploration
Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
31
593
0
06 Jun 2017
Previous
123
Next