Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.06840
Cited By
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants
23 June 2015
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants"
35 / 35 papers shown
Title
An Efficient Row-Based Sparse Fine-Tuning
Cen-Jhih Li
Aditya Bhaskara
56
0
0
17 Feb 2025
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient Method for Distributed Learning in Computing Clusters
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
30
1
0
17 Aug 2022
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Djamila Bouhata
Hamouma Moumen
Moumen Hamouma
Ahcène Bounceur
AI4CE
27
7
0
05 May 2022
Federated Learning with Buffered Asynchronous Aggregation
John Nguyen
Kshitiz Malik
Hongyuan Zhan
Ashkan Yousefpour
Michael G. Rabbat
Mani Malek
Dzmitry Huba
FedML
33
288
0
11 Jun 2021
Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization
Chaobing Song
Yong Jiang
Yi Ma
53
23
0
18 Jun 2020
Faster On-Device Training Using New Federated Momentum Algorithm
Zhouyuan Huo
Qian Yang
Bin Gu
Heng-Chiao Huang
FedML
19
47
0
06 Feb 2020
Federated Variance-Reduced Stochastic Gradient Descent with Robustness to Byzantine Attacks
Zhaoxian Wu
Qing Ling
Tianyi Chen
G. Giannakis
FedML
AAML
32
181
0
29 Dec 2019
Aggregated Gradient Langevin Dynamics
Chao Zhang
Jiahao Xie
Zebang Shen
P. Zhao
Tengfei Zhou
Hui Qian
28
1
0
21 Oct 2019
DEAM: Adaptive Momentum with Discriminative Weight for Stochastic Optimization
Jiyang Bai
Yuxiang Ren
Jiawei Zhang
ODL
21
1
0
25 Jul 2019
A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators
Xun Zhang
W. Haskell
Z. Ye
4
3
0
22 Jun 2019
Dynamic Mini-batch SGD for Elastic Distributed Training: Learning in the Limbo of Resources
Yanghua Peng
Hang Zhang
Yifei Ma
Tong He
Zhi-Li Zhang
Sheng Zha
Mu Li
17
23
0
26 Apr 2019
Gradient Scheduling with Global Momentum for Non-IID Data Distributed Asynchronous Training
Chengjie Li
Ruixuan Li
Yining Qi
Yuhua Li
Pan Zhou
Song Guo
Keqin Li
17
15
0
21 Feb 2019
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou
Fanhua Shang
James Cheng
14
74
0
28 Jun 2018
Double Quantization for Communication-Efficient Distributed Optimization
Yue Yu
Jiaxiang Wu
Longbo Huang
MQ
19
57
0
25 May 2018
Backpropagation with N-D Vector-Valued Neurons Using Arbitrary Bilinear Products
Zhe-Cheng Fan
T. Chan
Yi-Hsuan Yang
J. Jang
23
7
0
24 May 2018
Taming Convergence for Asynchronous Stochastic Gradient Descent with Unbounded Delay in Non-Convex Learning
Xin Zhang
Jia-Wei Liu
Zhengyuan Zhu
8
17
0
24 May 2018
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
16
70
0
11 Jan 2018
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
15
522
0
26 Oct 2017
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
28
127
0
11 Sep 2017
Variance-Reduced Stochastic Learning under Random Reshuffling
Bicheng Ying
Kun Yuan
Ali H. Sayed
23
13
0
04 Aug 2017
Asynchronous Stochastic Block Coordinate Descent with Variance Reduction
Bin Gu
Zhouyuan Huo
Heng-Chiao Huang
23
10
0
29 Oct 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
14
62
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
27
1,876
0
08 Oct 2016
Less than a Single Pass: Stochastically Controlled Stochastic Gradient Method
Lihua Lei
Michael I. Jordan
21
96
0
12 Sep 2016
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
11
150
0
24 Aug 2016
ASAGA: Asynchronous Parallel SAGA
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
AI4TS
19
101
0
15 Jun 2016
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful Enterprise Gamification
Xinghao Pan
21
62
0
29 May 2016
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
15
54
0
23 May 2016
Optimal Margin Distribution Machine
Teng Zhang
Zhi-Hua Zhou
20
72
0
12 Apr 2016
Trading-off variance and complexity in stochastic gradient descent
Vatsal Shah
Megasthenis Asteris
Anastasios Kyrillidis
Sujay Sanghavi
17
13
0
22 Mar 2016
Fast Incremental Method for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
10
44
0
19 Mar 2016
Accelerating Deep Neural Network Training with Inconsistent Stochastic Gradient Descent
Linnan Wang
Yi Yang
Martin Renqiang Min
S. Chakradhar
13
91
0
17 Mar 2016
SCOPE: Scalable Composite Optimization for Learning on Spark
Shen-Yi Zhao
Ru Xiang
Yinghuan Shi
Peng Gao
Wu-Jun Li
16
16
0
30 Jan 2016
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
177
683
0
07 Dec 2010
1