ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.05439
  4. Cited By
Learning with a Wasserstein Loss
v1v2v3 (latest)

Learning with a Wasserstein Loss

17 June 2015
Charlie Frogner
Chiyuan Zhang
H. Mobahi
Mauricio Araya-Polo
T. Poggio
ArXiv (abs)PDFHTML

Papers citing "Learning with a Wasserstein Loss"

50 / 181 papers shown
Title
Multi-subject MEG/EEG source imaging with sparse multi-task regression
Multi-subject MEG/EEG source imaging with sparse multi-task regression
H. Janati
Yonas T. Tadesse
Bertrand Thirion
Marco Cuturi
Alexandre Gramfort
114
32
0
03 Oct 2019
CWAE-IRL: Formulating a supervised approach to Inverse Reinforcement
  Learning problem
CWAE-IRL: Formulating a supervised approach to Inverse Reinforcement Learning problem
Arpan Kusari
BDL
17
0
0
02 Oct 2019
Statistical data analysis in the Wasserstein space
Statistical data analysis in the Wasserstein space
Jérémie Bigot
69
32
0
19 Jul 2019
Optimal Feature Transport for Cross-View Image Geo-Localization
Optimal Feature Transport for Cross-View Image Geo-Localization
Yujiao Shi
Xin Yu
Liu Liu
Tong Zhang
Hongdong Li
ViT
63
163
0
11 Jul 2019
Learning Where to Look While Tracking Instruments in Robot-assisted
  Surgery
Learning Where to Look While Tracking Instruments in Robot-assisted Surgery
Mobarakol Islam
Yueyuan Li
Hongliang Ren
95
45
0
29 Jun 2019
Minimum Stein Discrepancy Estimators
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
80
93
0
19 Jun 2019
Statistical Inference for Generative Models with Maximum Mean
  Discrepancy
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
60
72
0
13 Jun 2019
Wasserstein Weisfeiler-Lehman Graph Kernels
Wasserstein Weisfeiler-Lehman Graph Kernels
Matteo Togninalli
M. Ghisu
Felipe Llinares-López
Bastian Rieck
Karsten Borgwardt
92
201
0
04 Jun 2019
Deep multi-class learning from label proportions
Deep multi-class learning from label proportions
Gabriel Dulac-Arnold
Neil Zeghidour
Marco Cuturi
Lucas Beyer
Jean-Philippe Vert
79
50
0
30 May 2019
Interior-Point Methods Strike Back: Solving the Wasserstein Barycenter
  Problem
Interior-Point Methods Strike Back: Solving the Wasserstein Barycenter Problem
Dongdong Ge
Haoyue Wang
Zikai Xiong
Yinyu Ye
72
28
0
30 May 2019
Wasserstein Style Transfer
Wasserstein Style Transfer
Youssef Mroueh
OT
58
48
0
30 May 2019
Solving graph compression via optimal transport
Solving graph compression via optimal transport
Vikas Garg
Tommi Jaakkola
OT
67
16
0
29 May 2019
Utility/Privacy Trade-off through the lens of Optimal Transport
Utility/Privacy Trade-off through the lens of Optimal Transport
Etienne Boursier
Vianney Perchet
59
8
0
27 May 2019
Regularity as Regularization: Smooth and Strongly Convex Brenier
  Potentials in Optimal Transport
Regularity as Regularization: Smooth and Strongly Convex Brenier Potentials in Optimal Transport
François-Pierre Paty
Alexandre d’Aspremont
Marco Cuturi
OT
131
33
0
26 May 2019
Concentration bounds for linear Monge mapping estimation and optimal
  transport domain adaptation
Concentration bounds for linear Monge mapping estimation and optimal transport domain adaptation
Rémi Flamary
Karim Lounici
A. Ferrari
73
24
0
24 May 2019
Geometric Losses for Distributional Learning
Geometric Losses for Distributional Learning
A. Mensch
Mathieu Blondel
Gabriel Peyré
143
16
0
15 May 2019
Imputing Missing Events in Continuous-Time Event Streams
Imputing Missing Events in Continuous-Time Event Streams
Hongyuan Mei
Guanghui Qin
Jason Eisner
AI4TS
75
41
0
14 May 2019
Learning Embeddings into Entropic Wasserstein Spaces
Learning Embeddings into Entropic Wasserstein Spaces
Charlie Frogner
F. Mirzazadeh
Justin Solomon
74
32
0
08 May 2019
On Scalable and Efficient Computation of Large Scale Optimal Transport
On Scalable and Efficient Computation of Large Scale Optimal Transport
Yujia Xie
Minshuo Chen
Haoming Jiang
T. Zhao
H. Zha
OT
109
44
0
01 May 2019
Wasserstein Adversarial Regularization (WAR) on label noise
Wasserstein Adversarial Regularization (WAR) on label noise
Kilian Fatras
B. Bushan
Sylvain Lobry
Rémi Flamary
D. Tuia
Nicolas Courty
81
25
0
08 Apr 2019
Learning with Batch-wise Optimal Transport Loss for 3D Shape Recognition
Learning with Batch-wise Optimal Transport Loss for 3D Shape Recognition
Lin Xu
Han Sun
Yuai Liu
3DPC
28
26
0
21 Mar 2019
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Chen-Yu Lee
Tanmay Batra
M. H. Baig
Daniel Ulbricht
185
543
0
10 Mar 2019
Wasserstein Barycenter Model Ensembling
Wasserstein Barycenter Model Ensembling
Pierre Dognin
Igor Melnyk
Youssef Mroueh
Jerret Ross
Cicero Nogueira dos Santos
Tom Sercu
79
25
0
13 Feb 2019
Generalized Sliced Wasserstein Distances
Generalized Sliced Wasserstein Distances
Soheil Kolouri
Kimia Nadjahi
Umut Simsekli
Roland Badeau
Gustavo K. Rohde
77
302
0
01 Feb 2019
Tree-Sliced Variants of Wasserstein Distances
Tree-Sliced Variants of Wasserstein Distances
Tam Le
M. Yamada
Kenji Fukumizu
Marco Cuturi
OT
93
84
0
01 Feb 2019
Asymptotic distribution and convergence rates of stochastic algorithms
  for entropic optimal transportation between probability measures
Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures
Bernard Bercu
Jérémie Bigot
66
19
0
21 Dec 2018
Stochastic Deep Networks
Stochastic Deep Networks
Gwendoline de Bie
Gabriel Peyré
Marco Cuturi
107
21
0
19 Nov 2018
Scalable Unbalanced Optimal Transport using Generative Adversarial
  Networks
Scalable Unbalanced Optimal Transport using Generative Adversarial Networks
Karren D. Yang
Caroline Uhler
GANOT
92
76
0
26 Oct 2018
Interpolating between Optimal Transport and MMD using Sinkhorn
  Divergences
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
100
533
0
18 Oct 2018
Sample Complexity of Sinkhorn divergences
Sample Complexity of Sinkhorn divergences
Aude Genevay
Lénaïc Chizat
Francis R. Bach
Marco Cuturi
Gabriel Peyré
OT
102
291
0
05 Oct 2018
Multilevel Optimal Transport: a Fast Approximation of Wasserstein-1
  distances
Multilevel Optimal Transport: a Fast Approximation of Wasserstein-1 distances
Jialin Liu
W. Yin
Wuchen Li
Y. T. Chow
OT
41
37
0
29 Sep 2018
Entropic optimal transport is maximum-likelihood deconvolution
Entropic optimal transport is maximum-likelihood deconvolution
Philippe Rigollet
Jonathan Niles-Weed
OT
87
78
0
14 Sep 2018
Neural Network Encapsulation
Neural Network Encapsulation
Hongyang Li
Xiaoyang Guo
Bo Dai
Wanli Ouyang
Xiaogang Wang
62
51
0
11 Aug 2018
Multi-shot Person Re-identification through Set Distance with Visual
  Distributional Representation
Multi-shot Person Re-identification through Set Distance with Visual Distributional Representation
Ting-Yao Hu
Xiaojun Chang
Alexander G. Hauptmann
32
5
0
03 Aug 2018
Improved Deep Spectral Convolution Network For Hyperspectral Unmixing
  With Multinomial Mixture Kernel and Endmember Uncertainty
Improved Deep Spectral Convolution Network For Hyperspectral Unmixing With Multinomial Mixture Kernel and Endmember Uncertainty
Savas Ozkan
G. Akar
UQCV
109
14
0
03 Aug 2018
Variational Wasserstein Clustering
Variational Wasserstein Clustering
Liang Mi
Wen Zhang
X. Gu
Yalin Wang
OT
123
43
0
23 Jun 2018
Statistical Optimal Transport via Factored Couplings
Statistical Optimal Transport via Factored Couplings
Aden Forrow
Jan-Christian Hütter
Mor Nitzan
Philippe Rigollet
Geoffrey Schiebinger
Jonathan Niles-Weed
OT
170
70
0
19 Jun 2018
Equivalence Between Wasserstein and Value-Aware Loss for Model-based
  Reinforcement Learning
Equivalence Between Wasserstein and Value-Aware Loss for Model-based Reinforcement Learning
Kavosh Asadi
Evan Cater
Dipendra Kumar Misra
Michael L. Littman
OffRL
70
11
0
01 Jun 2018
Differential Properties of Sinkhorn Approximation for Learning with
  Wasserstein Distance
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance
Giulia Luise
Alessandro Rudi
Massimiliano Pontil
C. Ciliberto
OT
91
133
0
30 May 2018
Bayesian Learning with Wasserstein Barycenters
Bayesian Learning with Wasserstein Barycenters
Julio D. Backhoff Veraguas
J. Fontbona
Gonzalo Rios
Felipe A. Tobar
64
31
0
28 May 2018
Wasserstein regularization for sparse multi-task regression
Wasserstein regularization for sparse multi-task regression
H. Janati
Marco Cuturi
Alexandre Gramfort
167
50
0
20 May 2018
Computing Kantorovich-Wasserstein Distances on $d$-dimensional
  histograms using $(d+1)$-partite graphs
Computing Kantorovich-Wasserstein Distances on ddd-dimensional histograms using (d+1)(d+1)(d+1)-partite graphs
Gennaro Auricchio
F. Bassetti
Stefano Gualandi
Marco Veneroni
14
20
0
18 May 2018
Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative
  Model
Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model
Soheil Kolouri
Phillip E. Pope
Charles E. Martin
Gustavo K. Rohde
67
94
0
05 Apr 2018
On the Computation of Kantorovich-Wasserstein Distances between
  2D-Histograms by Uncapacitated Minimum Cost Flows
On the Computation of Kantorovich-Wasserstein Distances between 2D-Histograms by Uncapacitated Minimum Cost Flows
F. Bassetti
Stefano Gualandi
Marco Veneroni
22
11
0
02 Apr 2018
Distributed Computation of Wasserstein Barycenters over Networks
Distributed Computation of Wasserstein Barycenters over Networks
César A. Uribe
D. Dvinskikh
Pavel Dvurechensky
Alexander Gasnikov
A. Nedić
56
53
0
08 Mar 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
331
2,169
0
01 Mar 2018
The K-Nearest Neighbour UCB algorithm for multi-armed bandits with
  covariates
The K-Nearest Neighbour UCB algorithm for multi-armed bandits with covariates
Henry W. J. Reeve
J. Mellor
Gavin Brown
64
28
0
01 Mar 2018
Blind Source Separation with Optimal Transport Non-negative Matrix
  Factorization
Blind Source Separation with Optimal Transport Non-negative Matrix Factorization
Antoine Rolet
Vivien Seguy
Mathieu Blondel
H. Sawada
OT
25
15
0
15 Feb 2018
On Wasserstein Reinforcement Learning and the Fokker-Planck equation
On Wasserstein Reinforcement Learning and the Fokker-Planck equation
Pierre Harvey Richemond
B. Maginnis
70
24
0
19 Dec 2017
Structured Optimal Transport
Structured Optimal Transport
David Alvarez-Melis
Tommi Jaakkola
Stefanie Jegelka
OT
77
71
0
17 Dec 2017
Previous
1234
Next