ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.05439
  4. Cited By
Learning with a Wasserstein Loss
v1v2v3 (latest)

Learning with a Wasserstein Loss

17 June 2015
Charlie Frogner
Chiyuan Zhang
H. Mobahi
Mauricio Araya-Polo
T. Poggio
ArXiv (abs)PDFHTML

Papers citing "Learning with a Wasserstein Loss"

50 / 181 papers shown
Title
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Luc Brogat-Motte
Rémi Flamary
Céline Brouard
Juho Rousu
Florence dÁlché-Buc
92
23
0
08 Feb 2022
Learning Proximal Operators to Discover Multiple Optima
Learning Proximal Operators to Discover Multiple Optima
Lingxiao Li
Noam Aigerman
Vladimir G. Kim
Jiajin Li
Kristjan Greenewald
Mikhail Yurochkin
Justin Solomon
94
1
0
28 Jan 2022
Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and
  1-D Frank-Wolfe
Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe
Thibault Séjourné
Franccois-Xavier Vialard
Gabriel Peyré
OT
135
19
0
03 Jan 2022
Cycle Consistent Probability Divergences Across Different Spaces
Cycle Consistent Probability Divergences Across Different Spaces
Zhengxin Zhang
Youssef Mroueh
Ziv Goldfeld
Bharath K. Sriperumbudur
79
10
0
22 Nov 2021
Learning Generalized Gumbel-max Causal Mechanisms
Learning Generalized Gumbel-max Causal Mechanisms
Guy Lorberbom
Daniel D. Johnson
Chris J. Maddison
Daniel Tarlow
Tamir Hazan
CML
72
20
0
11 Nov 2021
Data-Centric AI Requires Rethinking Data Notion
Data-Centric AI Requires Rethinking Data Notion
Mustafa Hajij
Ghada Zamzmi
Karthikeyan N. Ramamurthy
Aldo Guzmán-Sáenz
112
16
0
06 Oct 2021
KNOT: Knowledge Distillation using Optimal Transport for Solving NLP
  Tasks
KNOT: Knowledge Distillation using Optimal Transport for Solving NLP Tasks
Rishabh Bhardwaj
Tushar Vaidya
Soujanya Poria
OTFedML
131
7
0
06 Oct 2021
Exact Statistical Inference for the Wasserstein Distance by Selective
  Inference
Exact Statistical Inference for the Wasserstein Distance by Selective Inference
Vo Nguyen Le Duy
Ichiro Takeuchi
82
14
0
29 Sep 2021
Estimation of Stationary Optimal Transport Plans
Estimation of Stationary Optimal Transport Plans
Kevin O'Connor
K. Mcgoff
A. Nobel
OT
67
3
0
25 Jul 2021
Rates of Estimation of Optimal Transport Maps using Plug-in Estimators
  via Barycentric Projections
Rates of Estimation of Optimal Transport Maps using Plug-in Estimators via Barycentric Projections
Nabarun Deb
Promit Ghosal
B. Sen
OT
126
75
0
04 Jul 2021
Unbalanced Optimal Transport through Non-negative Penalized Linear
  Regression
Unbalanced Optimal Transport through Non-negative Penalized Linear Regression
Laetitia Chapel
Rémi Flamary
Haoran Wu
Cédric Févotte
Gilles Gasso
OT
52
46
0
08 Jun 2021
A framework for data-driven solution and parameter estimation of PDEs
  using conditional generative adversarial networks
A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks
T. Kadeethum
Daniel O’Malley
J. Fuhg
Youngsoo Choi
Jonghyun Lee
Hari S. Viswanathan
N. Bouklas
AI4CE
74
88
0
27 May 2021
Embedding Semantic Hierarchy in Discrete Optimal Transport for Risk
  Minimization
Embedding Semantic Hierarchy in Discrete Optimal Transport for Risk Minimization
Yubin Ge
Site Li
Xuyang Li
Fangfang Fan
Wanqing Xie
J. You
Xiaofeng Liu
82
8
0
30 Apr 2021
Semi-Supervised Multi-Modal Multi-Instance Multi-Label Deep Network with
  Optimal Transport
Semi-Supervised Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport
Yang Yang
Zhao-Yang Fu
De-Chuan Zhan
Zhi-Bin Liu
Yuan Jiang
69
58
0
17 Apr 2021
SPOT: A framework for selection of prototypes using optimal transport
SPOT: A framework for selection of prototypes using optimal transport
Karthik S. Gurumoorthy
Pratik Jawanpuria
Bamdev Mishra
OT
71
12
0
18 Mar 2021
Information-geometry of physics-informed statistical manifolds and its
  use in data assimilation
Information-geometry of physics-informed statistical manifolds and its use in data assimilation
F. Boso
D. Tartakovsky
AI4CE
70
8
0
01 Mar 2021
Manifold optimization for non-linear optimal transport problems
Manifold optimization for non-linear optimal transport problems
Bamdev Mishra
N. Satyadev
Hiroyuki Kasai
Pratik Jawanpuria
OT
79
11
0
01 Mar 2021
Computationally Efficient Wasserstein Loss for Structured Labels
Computationally Efficient Wasserstein Loss for Structured Labels
Ayato Toyokuni
Sho Yokoi
H. Kashima
M. Yamada
48
2
0
01 Mar 2021
Diffusion Earth Mover's Distance and Distribution Embeddings
Diffusion Earth Mover's Distance and Distribution Embeddings
Alexander Tong
G. Huguet
A. Natik
Kincaid MacDonald
Manik Kuchroo
Ronald R. Coifman
Guy Wolf
Smita Krishnaswamy
MedIm
66
30
0
25 Feb 2021
Learning to Generate Wasserstein Barycenters
Learning to Generate Wasserstein Barycenters
Julien Lacombe
Julie Digne
Nicolas Courty
Nicolas Bonneel
61
12
0
24 Feb 2021
Towards a mathematical theory of trajectory inference
Towards a mathematical theory of trajectory inference
Hugo Lavenant
Stephen X. Zhang
Young-Heon Kim
Geoffrey Schiebinger
50
41
0
18 Feb 2021
Wasserstein Proximal of GANs
Wasserstein Proximal of GANs
A. Lin
Wuchen Li
Stanley Osher
Guido Montúfar
GAN
50
47
0
13 Feb 2021
Minibatch optimal transport distances; analysis and applications
Minibatch optimal transport distances; analysis and applications
Kilian Fatras
Younes Zine
Szymon Majewski
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
116
60
0
05 Jan 2021
Entropy-regularized optimal transport on multivariate normal and
  q-normal distributions
Entropy-regularized optimal transport on multivariate normal and q-normal distributions
Qijun Tong
Kei Kobayashi
OT
37
7
0
19 Dec 2020
Projected Distribution Loss for Image Enhancement
Projected Distribution Loss for Image Enhancement
M. Delbracio
Hossein Talebi
P. Milanfar
SupR
84
37
0
16 Dec 2020
A contribution to Optimal Transport on incomparable spaces
A contribution to Optimal Transport on incomparable spaces
Titouan Vayer
OT
73
20
0
09 Nov 2020
Importance-Aware Semantic Segmentation in Self-Driving with Discrete
  Wasserstein Training
Importance-Aware Semantic Segmentation in Self-Driving with Discrete Wasserstein Training
Xiaofeng Liu
Yuzhuo Han
S. Bai
Yi Ge
Tianxing Wang
Xu Han
Site Li
J. You
Jun Lu
80
55
0
21 Oct 2020
Robust Optimal Transport with Applications in Generative Modeling and
  Domain Adaptation
Robust Optimal Transport with Applications in Generative Modeling and Domain Adaptation
Yogesh Balaji
Ramalingam Chellappa
Soheil Feizi
OT
167
105
0
12 Oct 2020
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and
  Relaxation
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
Thibault Séjourné
François-Xavier Vialard
Gabriel Peyré
OT
99
71
0
09 Sep 2020
A Functional Perspective on Learning Symmetric Functions with Neural
  Networks
A Functional Perspective on Learning Symmetric Functions with Neural Networks
Aaron Zweig
Joan Bruna
95
22
0
16 Aug 2020
Wasserstein Statistics in One-dimensional Location-Scale Model
Wasserstein Statistics in One-dimensional Location-Scale Model
S. Amari
Takeru Matsuda
52
9
0
21 Jul 2020
Estimating Barycenters of Measures in High Dimensions
Estimating Barycenters of Measures in High Dimensions
Samuel N. Cohen
Michael Arbel
M. Deisenroth
176
25
0
14 Jul 2020
Probabilistic Optimal Transport based on Collective Graphical Models
Probabilistic Optimal Transport based on Collective Graphical Models
Yasunori Akagi
Yusuke Tanaka
Tomoharu Iwata
Takeshi Kurashima
Hiroyuki Toda
OT
33
2
0
16 Jun 2020
Fast Unbalanced Optimal Transport on a Tree
Fast Unbalanced Optimal Transport on a Tree
Ryoma Sato
M. Yamada
H. Kashima
OT
61
26
0
04 Jun 2020
On Linear Optimization over Wasserstein Balls
On Linear Optimization over Wasserstein Balls
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
72
52
0
15 Apr 2020
Regularizing activations in neural networks via distribution matching
  with the Wasserstein metric
Regularizing activations in neural networks via distribution matching with the Wasserstein metric
Taejong Joo
Donggu Kang
Byunghoon Kim
76
8
0
13 Feb 2020
Missing Data Imputation using Optimal Transport
Missing Data Imputation using Optimal Transport
Boris Muzellec
Julie Josse
Claire Boyer
Marco Cuturi
OT
78
127
0
10 Feb 2020
On Unbalanced Optimal Transport: An Analysis of Sinkhorn Algorithm
On Unbalanced Optimal Transport: An Analysis of Sinkhorn Algorithm
Khiem Pham
Khang Le
Nhat Ho
Tung Pham
Hung Bui
OT
105
84
0
09 Feb 2020
Statistical Optimal Transport posed as Learning Kernel Embedding
Statistical Optimal Transport posed as Learning Kernel Embedding
SakethaNath Jagarlapudi
Pratik Jawanpuria
OT
42
16
0
08 Feb 2020
Regularization Helps with Mitigating Poisoning Attacks:
  Distributionally-Robust Machine Learning Using the Wasserstein Distance
Regularization Helps with Mitigating Poisoning Attacks: Distributionally-Robust Machine Learning Using the Wasserstein Distance
F. Farokhi
OOD
49
7
0
29 Jan 2020
Coupling Matrix Manifolds and Their Applications in Optimal Transport
Coupling Matrix Manifolds and Their Applications in Optimal Transport
Dai Shi
Junbin Gao
X. Hong
S. Choy
Zhiyong Wang
OT
23
0
0
15 Nov 2019
Ground Metric Learning on Graphs
Ground Metric Learning on Graphs
Matthieu Heitz
Nicolas Bonneel
D. Coeurjolly
Marco Cuturi
Gabriel Peyré
OT
68
21
0
08 Nov 2019
Unimodal-uniform Constrained Wasserstein Training for Medical Diagnosis
Unimodal-uniform Constrained Wasserstein Training for Medical Diagnosis
Xiaofeng Liu
Xu Han
Yukai Qiao
Yi Ge
Lu Jun
82
33
0
03 Nov 2019
Conservative Wasserstein Training for Pose Estimation
Conservative Wasserstein Training for Pose Estimation
Xiaofeng Liu
Yang Zou
Tong Che
Peng Ding
P. Jia
J. You
Kumar B.V.K
88
33
0
03 Nov 2019
Multi-marginal Wasserstein GAN
Multi-marginal Wasserstein GAN
Jingyun Liang
Langyuan Mo
Yifan Zhang
Kui Jia
Chunhua Shen
Mingkui Tan
77
79
0
03 Nov 2019
Sinkhorn Divergences for Unbalanced Optimal Transport
Sinkhorn Divergences for Unbalanced Optimal Transport
Thibault Séjourné
Jean Feydy
Franccois-Xavier Vialard
A. Trouvé
Gabriel Peyré
OT
97
74
0
28 Oct 2019
Dynamic multi-agent assignment via discrete optimal transport
Dynamic multi-agent assignment via discrete optimal transport
Koray G. Kachar
Alex A. Gorodetsky
OT
42
4
0
23 Oct 2019
Learning with minibatch Wasserstein : asymptotic and gradient properties
Learning with minibatch Wasserstein : asymptotic and gradient properties
Kilian Fatras
Younes Zine
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
97
96
0
09 Oct 2019
Spatio-Temporal Alignments: Optimal transport through space and time
Spatio-Temporal Alignments: Optimal transport through space and time
H. Janati
Marco Cuturi
Alexandre Gramfort
OTAI4TS
64
29
0
09 Oct 2019
A mathematical theory of cooperative communication
A mathematical theory of cooperative communication
Pei Wang
Junqi Wang
P. Paranamana
Patrick Shafto
72
50
0
07 Oct 2019
Previous
1234
Next