ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.05254
  4. Cited By
Gradient Estimation Using Stochastic Computation Graphs

Gradient Estimation Using Stochastic Computation Graphs

17 June 2015
John Schulman
N. Heess
T. Weber
Pieter Abbeel
    OffRL
ArXivPDFHTML

Papers citing "Gradient Estimation Using Stochastic Computation Graphs"

50 / 91 papers shown
Title
Stabilizing Reinforcement Learning in Differentiable Multiphysics Simulation
Stabilizing Reinforcement Learning in Differentiable Multiphysics Simulation
Eliot Xing
Vernon Luk
Jean Oh
84
0
0
16 Dec 2024
Generating Transferable Adversarial Simulation Scenarios for
  Self-Driving via Neural Rendering
Generating Transferable Adversarial Simulation Scenarios for Self-Driving via Neural Rendering
Yasasa Abeysirigoonawardena
Kevin Xie
Chuhan Chen
Salar Hosseini
Ruiting Chen
Ruiqi Wang
Florian Shkurti
36
2
0
27 Sep 2023
Branches of a Tree: Taking Derivatives of Programs with Discrete and
  Branching Randomness in High Energy Physics
Branches of a Tree: Taking Derivatives of Programs with Discrete and Branching Randomness in High Energy Physics
Michael Kagan
Lukas Heinrich
32
9
0
31 Aug 2023
Efficient Learning of Discrete-Continuous Computation Graphs
Efficient Learning of Discrete-Continuous Computation Graphs
David Friede
Mathias Niepert
13
3
0
26 Jul 2023
Learning to Select Camera Views: Efficient Multiview Understanding at
  Few Glances
Learning to Select Camera Views: Efficient Multiview Understanding at Few Glances
Yunzhong Hou
Stephen Gould
Liang Zheng
22
1
0
10 Mar 2023
A Tutorial on Parametric Variational Inference
A Tutorial on Parametric Variational Inference
Jens Sjölund
BDL
30
6
0
03 Jan 2023
Efficient Transformers with Dynamic Token Pooling
Efficient Transformers with Dynamic Token Pooling
Piotr Nawrot
J. Chorowski
Adrian Lañcucki
Edoardo Ponti
22
42
0
17 Nov 2022
Automatic Differentiation of Programs with Discrete Randomness
Automatic Differentiation of Programs with Discrete Randomness
Gaurav Arya
Moritz Schauer
Frank Schafer
Chris Rackauckas
23
34
0
16 Oct 2022
A Variational Perspective on Generative Flow Networks
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan-Willem van de Meent
C. A. Naesseth
22
32
0
14 Oct 2022
Ensemble Reinforcement Learning in Continuous Spaces -- A Hierarchical
  Multi-Step Approach for Policy Training
Ensemble Reinforcement Learning in Continuous Spaces -- A Hierarchical Multi-Step Approach for Policy Training
Gang Chen
Victoria Huang
OffRL
40
0
0
29 Sep 2022
Deep Structural Causal Shape Models
Deep Structural Causal Shape Models
Rajat Rasal
Daniel Coelho De Castro
Nick Pawlowski
Ben Glocker
3DV
MedIm
36
12
0
23 Aug 2022
Smoothness Analysis for Probabilistic Programs with Application to
  Optimised Variational Inference
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
Wonyeol Lee
Xavier Rival
Hongseok Yang
24
9
0
22 Aug 2022
Drawing out of Distribution with Neuro-Symbolic Generative Models
Drawing out of Distribution with Neuro-Symbolic Generative Models
Yi-Chuan Liang
J. Tenenbaum
T. Le
N. Siddharth
23
7
0
03 Jun 2022
Sparse Graph Learning from Spatiotemporal Time Series
Sparse Graph Learning from Spatiotemporal Time Series
Andrea Cini
Daniele Zambon
Cesare Alippi
CML
AI4TS
43
18
0
26 May 2022
Sample-efficient Iterative Lower Bound Optimization of Deep Reactive
  Policies for Planning in Continuous MDPs
Sample-efficient Iterative Lower Bound Optimization of Deep Reactive Policies for Planning in Continuous MDPs
Siow Meng Low
Akshat Kumar
Scott Sanner
19
3
0
23 Mar 2022
Safe Neurosymbolic Learning with Differentiable Symbolic Execution
Safe Neurosymbolic Learning with Differentiable Symbolic Execution
Chenxi Yang
Swarat Chaudhuri
27
9
0
15 Mar 2022
Consistent Dropout for Policy Gradient Reinforcement Learning
Consistent Dropout for Policy Gradient Reinforcement Learning
Matthew J. Hausknecht
Nolan Wagener
OffRL
24
10
0
23 Feb 2022
C2N: Practical Generative Noise Modeling for Real-World Denoising
C2N: Practical Generative Noise Modeling for Real-World Denoising
Geonwoon Jang
Wooseok Lee
Sanghyun Son
Kyoung Mu Lee
DiffM
33
78
0
19 Feb 2022
Gradient Estimation with Discrete Stein Operators
Gradient Estimation with Discrete Stein Operators
Jiaxin Shi
Yuhao Zhou
Jessica Hwang
Michalis K. Titsias
Lester W. Mackey
33
22
0
19 Feb 2022
Deep invariant networks with differentiable augmentation layers
Deep invariant networks with differentiable augmentation layers
Cédric Rommel
Thomas Moreau
Alexandre Gramfort
OOD
27
8
0
04 Feb 2022
Do Differentiable Simulators Give Better Policy Gradients?
Do Differentiable Simulators Give Better Policy Gradients?
H.J. Terry Suh
Max Simchowitz
Kaipeng Zhang
Russ Tedrake
32
95
0
02 Feb 2022
Generative Planning for Temporally Coordinated Exploration in
  Reinforcement Learning
Generative Planning for Temporally Coordinated Exploration in Reinforcement Learning
Haichao Zhang
Wei-ping Xu
Haonan Yu
38
10
0
24 Jan 2022
PriFit: Learning to Fit Primitives Improves Few Shot Point Cloud
  Segmentation
PriFit: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation
Gopal Sharma
Bidya Dash
Aruni RoyChowdhury
Matheus Gadelha
Marios Loizou
Liangliang Cao
Rui Wang
Erik Learned-Miller
Subhransu Maji
E. Kalogerakis
3DPC
21
13
0
27 Dec 2021
Unbiased Gradient Estimation in Unrolled Computation Graphs with
  Persistent Evolution Strategies
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
67
0
27 Dec 2021
Gradients are Not All You Need
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
30
93
0
10 Nov 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
29
20
0
21 Jun 2021
Differentiable Particle Filtering without Modifying the Forward Pass
Differentiable Particle Filtering without Modifying the Forward Pass
Adam Scibior
Frank Wood
28
19
0
18 Jun 2021
Characterizing the Gap Between Actor-Critic and Policy Gradient
Characterizing the Gap Between Actor-Critic and Policy Gradient
Junfeng Wen
Saurabh Kumar
Ramki Gummadi
Dale Schuurmans
31
15
0
13 Jun 2021
Parallel Attention Network with Sequence Matching for Video Grounding
Parallel Attention Network with Sequence Matching for Video Grounding
Hao Zhang
Aixin Sun
Wei Jing
Liangli Zhen
Qiufeng Wang
Rick Siow Mong Goh
18
40
0
18 May 2021
Storchastic: A Framework for General Stochastic Automatic
  Differentiation
Storchastic: A Framework for General Stochastic Automatic Differentiation
Emile van Krieken
Jakub M. Tomczak
A. T. Teije
ODL
OffRL
31
15
0
01 Apr 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
28
78
0
03 Mar 2021
Digital Gimbal: End-to-end Deep Image Stabilization with Learnable
  Exposure Times
Digital Gimbal: End-to-end Deep Image Stabilization with Learnable Exposure Times
Omer Dahary
M. Jacoby
A. Bronstein
19
5
0
08 Dec 2020
Direct Evolutionary Optimization of Variational Autoencoders With Binary
  Latents
Direct Evolutionary Optimization of Variational Autoencoders With Binary Latents
E. Guiraud
Jakob Drefs
Jörg Lücke
DRL
40
3
0
27 Nov 2020
Rescuing neural spike train models from bad MLE
Rescuing neural spike train models from bad MLE
Diego M. Arribas
Yuan Zhao
Il Memming Park
37
8
0
23 Oct 2020
Factor Graph Grammars
Factor Graph Grammars
David Chiang
Darcey Riley
LRM
21
10
0
22 Oct 2020
Model-Augmented Actor-Critic: Backpropagating through Paths
Model-Augmented Actor-Critic: Backpropagating through Paths
I. Clavera
Yao Fu
Pieter Abbeel
44
87
0
16 May 2020
On the Spontaneous Emergence of Discrete and Compositional Signals
On the Spontaneous Emergence of Discrete and Compositional Signals
Nur Lan
Emmanuel Chemla
Shane Steinert-Threlkeld
LRM
16
8
0
30 Apr 2020
Information-Theoretic Lower Bounds for Zero-Order Stochastic Gradient
  Estimation
Information-Theoretic Lower Bounds for Zero-Order Stochastic Gradient Estimation
Abdulrahman Alabdulkareem
Jean Honorio
6
2
0
31 Mar 2020
ParSeNet: A Parametric Surface Fitting Network for 3D Point Clouds
ParSeNet: A Parametric Surface Fitting Network for 3D Point Clouds
Gopal Sharma
Difan Liu
Subhransu Maji
E. Kalogerakis
S. Chaudhuri
Radomír Mvech
3DPC
24
138
0
26 Mar 2020
Better Captioning with Sequence-Level Exploration
Better Captioning with Sequence-Level Exploration
Jia Chen
Qin Jin
37
12
0
08 Mar 2020
Visual Camera Re-Localization from RGB and RGB-D Images Using DSAC
Visual Camera Re-Localization from RGB and RGB-D Images Using DSAC
Eric Brachmann
Carsten Rother
41
220
0
27 Feb 2020
Estimating Gradients for Discrete Random Variables by Sampling without
  Replacement
Estimating Gradients for Discrete Random Variables by Sampling without Replacement
W. Kool
H. V. Hoof
Max Welling
BDL
31
49
0
14 Feb 2020
All-Action Policy Gradient Methods: A Numerical Integration Approach
All-Action Policy Gradient Methods: A Numerical Integration Approach
Benjamin Petit
Loren Amdahl-Culleton
Yao Liu
Jimmy T.H. Smith
Pierre-Luc Bacon
24
9
0
21 Oct 2019
Deep clustering with concrete k-means
Deep clustering with concrete k-means
Boyan Gao
Yongxin Yang
Henry Gouk
Timothy M. Hospedales
13
16
0
17 Oct 2019
Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function
  Estimators for Reinforcement Learning
Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function Estimators for Reinforcement Learning
Gregory Farquhar
Shimon Whiteson
Jakob N. Foerster
13
18
0
23 Sep 2019
Causal Modeling for Fairness in Dynamical Systems
Causal Modeling for Fairness in Dynamical Systems
Elliot Creager
David Madras
T. Pitassi
R. Zemel
13
67
0
18 Sep 2019
Neural Text Summarization: A Critical Evaluation
Neural Text Summarization: A Critical Evaluation
Wojciech Kry'sciñski
N. Keskar
Bryan McCann
Caiming Xiong
R. Socher
22
361
0
23 Aug 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
45
397
0
25 Jun 2019
Learning Belief Representations for Imitation Learning in POMDPs
Learning Belief Representations for Imitation Learning in POMDPs
Tanmay Gangwani
Joel Lehman
Qiang Liu
Jian Peng
24
36
0
22 Jun 2019
Meta-Learning via Learned Loss
Meta-Learning via Learned Loss
Sarah Bechtle
Artem Molchanov
Yevgen Chebotar
Edward Grefenstette
Ludovic Righetti
Gaurav Sukhatme
Franziska Meier
20
110
0
12 Jun 2019
12
Next