ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02564
  4. Cited By
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential
  Families

Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families

8 June 2015
Heiko Strathmann
Dino Sejdinovic
Samuel Livingstone
Z. Szabó
A. Gretton
    BDL
ArXivPDFHTML

Papers citing "Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families"

16 / 16 papers shown
Title
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
29
2
0
02 Oct 2023
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
24
25
0
20 Mar 2022
A Computationally Efficient Method for Learning Exponential Family
  Distributions
A Computationally Efficient Method for Learning Exponential Family Distributions
Abhin Shah
Devavrat Shah
G. Wornell
18
9
0
28 Oct 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
19
74
0
15 Apr 2021
Denoising Score Matching with Random Fourier Features
Denoising Score Matching with Random Fourier Features
Olga Tsymboi
Yermek Kapushev
Evgeny Burnaev
Ivan V. Oseledets
22
1
0
13 Jan 2021
Nonparametric Score Estimators
Nonparametric Score Estimators
Yuhao Zhou
Jiaxin Shi
Jun Zhu
20
23
0
20 May 2020
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
19
14
0
27 May 2019
Sliced Score Matching: A Scalable Approach to Density and Score
  Estimation
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
8
396
0
17 May 2019
Efficiency and robustness in Monte Carlo sampling of 3-D geophysical
  inversions with Obsidian v0.1.2: Setting up for success
Efficiency and robustness in Monte Carlo sampling of 3-D geophysical inversions with Obsidian v0.1.2: Setting up for success
R. Scalzo
D. Kohn
H. Olierook
G. Houseman
Rohitash Chandra
Mark Girolami
Sally Cripps
11
32
0
02 Dec 2018
A Spectral Approach to Gradient Estimation for Implicit Distributions
A Spectral Approach to Gradient Estimation for Implicit Distributions
Jiaxin Shi
Shengyang Sun
Jun Zhu
9
90
0
07 Jun 2018
Modified Hamiltonian Monte Carlo for Bayesian inference
Modified Hamiltonian Monte Carlo for Bayesian inference
Tijana Radivojević
E. Akhmatskaya
12
31
0
13 Jun 2017
Hamiltonian Monte Carlo Methods for Subset Simulation in Reliability
  Analysis
Hamiltonian Monte Carlo Methods for Subset Simulation in Reliability Analysis
Ziqi Wang
M. Broccardo
Junho Song
9
116
0
05 Jun 2017
Pseudo-Marginal Hamiltonian Monte Carlo
Pseudo-Marginal Hamiltonian Monte Carlo
Johan Alenlöv
Arnaud Doucet
Fredrik Lindsten
16
22
0
08 Jul 2016
Optimal Rates for Random Fourier Features
Optimal Rates for Random Fourier Features
Bharath K. Sriperumbudur
Z. Szabó
19
128
0
06 Jun 2015
Scalable Bayesian Inference for the Inverse Temperature of a Hidden
  Potts Model
Scalable Bayesian Inference for the Inverse Temperature of a Hidden Potts Model
M. Moores
Geoff K. Nicholls
A. Pettitt
Kerrie Mengersen
TPM
27
22
0
27 Mar 2015
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
170
3,260
0
09 Jun 2012
1