Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
- BDL

Abstract
We propose Kamiltonian Monte Carlo (KMC), a gradient-free adaptive MCMC algorithm based on Hamiltonian Monte Carlo (HMC). On target densities where HMC is unavailable due to intractable gradients, KMC adaptively learns the target's gradient structure by fitting an exponential family model in a Reproducing Kernel Hilbert Space. Computational costs are reduced by two novel efficient approximations to this gradient. While being asymptotically exact, KMC mimics HMC in terms of sampling efficiency and offers substantial mixing improvements to state-of-the-art gradient free-samplers. We support our claims with experimental studies on both toy and real-world applications, including Approximate Bayesian Computation and exact-approximate MCMC.
View on arXivComments on this paper