Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.02142
Cited By
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
6 June 2015
Y. Gal
Zoubin Ghahramani
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning"
50 / 1,102 papers shown
Title
Universal Dependency Parsing from Scratch
Peng Qi
Timothy Dozat
Yuhao Zhang
Christopher D. Manning
15
267
0
29 Jan 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
26
853
0
18 Jan 2019
Input Prioritization for Testing Neural Networks
Taejoon Byun
Vaibhav Sharma
Abhishek Vijayakumar
Sanjai Rayadurgam
D. Cofer
AAML
19
67
0
11 Jan 2019
Can You Trust This Prediction? Auditing Pointwise Reliability After Learning
Peter F. Schulam
S. Saria
OOD
16
103
0
02 Jan 2019
Opportunistic Learning: Budgeted Cost-Sensitive Learning from Data Streams
Mohammad Kachuee
Orpaz Goldstein
Kimmo Karkkainen
Sajad Darabi
Majid Sarrafzadeh
OOD
17
31
0
02 Jan 2019
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
OODD
10
550
0
13 Dec 2018
Scene Recomposition by Learning-based ICP
Hamid Izadinia
S. M. Seitz
3DV
3DPC
12
14
0
13 Dec 2018
Neural Processes Mixed-Effect Models for Deep Normative Modeling of Clinical Neuroimaging Data
S. M. Kia
A. Marquand
14
25
0
12 Dec 2018
Guided Dropout
Rohit Keshari
Richa Singh
Mayank Vatsa
BDL
13
37
0
10 Dec 2018
Physics-informed deep generative models
Yibo Yang
P. Perdikaris
AI4CE
PINN
11
57
0
09 Dec 2018
Backdooring Convolutional Neural Networks via Targeted Weight Perturbations
Jacob Dumford
Walter J. Scheirer
AAML
6
116
0
07 Dec 2018
Random Spiking and Systematic Evaluation of Defenses Against Adversarial Examples
Huangyi Ge
Sze Yiu Chau
Bruno Ribeiro
Ninghui Li
AAML
14
1
0
05 Dec 2018
Knowing what you know in brain segmentation using Bayesian deep neural networks
Patrick McClure
Nao Rho
J. Lee
Jakub R. Kaczmarzyk
C. Zheng
Satrajit S. Ghosh
D. Nielson
Adam G. Thomas
P. Bandettini
Francisco Pereira
UQCV
3DV
BDL
11
52
0
03 Dec 2018
Discrete Adversarial Attacks and Submodular Optimization with Applications to Text Classification
Qi Lei
Lingfei Wu
Pin-Yu Chen
A. Dimakis
Inderjit S. Dhillon
Michael Witbrock
AAML
13
92
0
01 Dec 2018
Evaluating Bayesian Deep Learning Methods for Semantic Segmentation
Jishnu Mukhoti
Y. Gal
UQCV
BDL
29
220
0
30 Nov 2018
Iterative Projection and Matching: Finding Structure-preserving Representatives and Its Application to Computer Vision
M. Joneidi
Alireza Zaeemzadeh
Nazanin Rahnavard
M. Shah
22
13
0
29 Nov 2018
Bayesian graph convolutional neural networks for semi-supervised classification
Yingxue Zhang
Soumyasundar Pal
Mark J. Coates
Deniz Üstebay
GNN
BDL
19
227
0
27 Nov 2018
Probabilistic Object Detection: Definition and Evaluation
David Hall
Feras Dayoub
John Skinner
Haoyang Zhang
Dimity Miller
Peter Corke
G. Carneiro
A. Angelova
Niko Sünderhauf
UQCV
24
111
0
27 Nov 2018
Scalable agent alignment via reward modeling: a research direction
Jan Leike
David M. Krueger
Tom Everitt
Miljan Martic
Vishal Maini
Shane Legg
20
392
0
19 Nov 2018
Uncertain Trees: Dealing with Uncertain Inputs in Regression Trees
Myriam Tami
Marianne Clausel
Emilie Devijver
A. Dulac
Éric Gaussier
Stefan Janaqi
M. Chèbre
UQCV
11
0
0
27 Oct 2018
CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation
Radek Mackowiak
Philip Lenz
Omair Ghori
Ferran Diego
O. Lange
Carsten Rother
26
108
0
23 Oct 2018
Good Initializations of Variational Bayes for Deep Models
Simone Rossi
Pietro Michiardi
Maurizio Filippone
BDL
17
21
0
18 Oct 2018
PANDA: AdaPtive Noisy Data Augmentation for Regularization of Undirected Graphical Models
Yinan Li
Xiao Liu
Fang Liu
21
7
0
11 Oct 2018
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard E. Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCV
AAML
BDL
29
16
0
09 Oct 2018
Design by adaptive sampling
David H. Brookes
Jennifer Listgarten
TPM
31
65
0
08 Oct 2018
Bayesian Prediction of Future Street Scenes using Synthetic Likelihoods
Apratim Bhattacharyya
Mario Fritz
Bernt Schiele
UQCV
17
46
0
01 Oct 2018
Towards increased trustworthiness of deep learning segmentation methods on cardiac MRI
Jörg Sander
B. D. de Vos
J. Wolterink
Ivana Išgum
9
59
0
27 Sep 2018
Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection
Dimity Miller
Feras Dayoub
Michael Milford
Niko Sünderhauf
12
105
0
17 Sep 2018
A Full End-to-End Semantic Role Labeler, Syntax-agnostic Over Syntax-aware?
Jiaxun Cai
Shexia He
Z. Li
Zhao Hai
27
77
0
11 Aug 2018
Policy Optimization as Wasserstein Gradient Flows
Ruiyi Zhang
Changyou Chen
Chunyuan Li
Lawrence Carin
9
66
0
09 Aug 2018
Active Learning for Segmentation by Optimizing Content Information for Maximal Entropy
Firat Özdemir
Z. Peng
C. Tanner
Philipp Fürnstahl
O. Goksel
12
28
0
18 Jul 2018
Practical Obstacles to Deploying Active Learning
David Lowell
Zachary Chase Lipton
Byron C. Wallace
25
111
0
12 Jul 2018
Machine Learning in High Energy Physics Community White Paper
K. Albertsson
Piero Altoe
D. Anderson
John R. Anderson
Michael Andrews
...
Michael Williams
Wenjing Wu
Stefan Wunsch
Kun Yang
O. Zapata
AI4CE
6
220
0
08 Jul 2018
A survey on policy search algorithms for learning robot controllers in a handful of trials
Konstantinos Chatzilygeroudis
Vassilis Vassiliades
F. Stulp
Sylvain Calinon
Jean-Baptiste Mouret
15
154
0
06 Jul 2018
Simpler but More Accurate Semantic Dependency Parsing
Timothy Dozat
Christopher D. Manning
GNN
13
177
0
03 Jul 2018
Dropout-based Active Learning for Regression
Evgenii Tsymbalov
Maxim Panov
Alexander Shapeev
BDL
UQCV
6
56
0
26 Jun 2018
Understanding Dropout as an Optimization Trick
Sangchul Hahn
Heeyoul Choi
ODL
11
34
0
26 Jun 2018
On the Implicit Bias of Dropout
Poorya Mianjy
R. Arora
René Vidal
17
66
0
26 Jun 2018
Towards safe deep learning: accurately quantifying biomarker uncertainty in neural network predictions
Zach Eaton-Rosen
Felix J. S. Bragman
Sotirios Bisdas
Sebastien Ourselin
M. Jorge Cardoso
UQCV
15
85
0
22 Jun 2018
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDL
UQCV
13
77
0
13 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
16
44
0
12 Jun 2018
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCV
BDL
4
373
0
08 Jun 2018
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
17
68
0
06 Jun 2018
MILD-Net: Minimal Information Loss Dilated Network for Gland Instance Segmentation in Colon Histology Images
S. Graham
Hao Chen
Jevgenij Gamper
Qi Dou
Pheng-Ann Heng
David R. J. Snead
Yee Wah Tsang
Nasir M. Rajpoot
MedIm
19
301
0
05 Jun 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
29
951
0
05 Jun 2018
Learn the new, keep the old: Extending pretrained models with new anatomy and images
Firat Özdemir
Philipp Fürnstahl
Orçun Göksel
CLL
20
48
0
01 Jun 2018
Short-term Load Forecasting with Deep Residual Networks
Kunjin Chen
Kunlong Chen
Qin Wang
Ziyu He
Jun Hu
Jinliang He
27
463
0
30 May 2018
To Trust Or Not To Trust A Classifier
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
UQCV
17
464
0
30 May 2018
Lightweight Probabilistic Deep Networks
Jochen Gast
Stefan Roth
UQCV
OOD
BDL
22
180
0
29 May 2018
Towards Robust Evaluations of Continual Learning
Sebastian Farquhar
Y. Gal
CLL
13
304
0
24 May 2018
Previous
1
2
3
...
20
21
22
23
Next