Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1505.03654
Cited By
Neural Network with Unbounded Activation Functions is Universal Approximator
14 May 2015
Sho Sonoda
Noboru Murata
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Network with Unbounded Activation Functions is Universal Approximator"
50 / 109 papers shown
Title
Universal Approximation Theorem for Neural Networks
Takato Nishijima
11
13
0
19 Feb 2021
Universal Approximation Properties for an ODENet and a ResNet: Mathematical Analysis and Numerical Experiments
Yuto Aizawa
M. Kimura
Kazunori Matsui
6
2
0
22 Dec 2020
Physical deep learning based on optimal control of dynamical systems
Genki Furuhata
T. Niiyama
S. Sunada
PINN
AI4CE
29
14
0
16 Dec 2020
A global universality of two-layer neural networks with ReLU activations
N. Hatano
Masahiro Ikeda
Isao Ishikawa
Y. Sawano
8
5
0
20 Nov 2020
Time Synchronized State Estimation for Incompletely Observed Distribution Systems Using Deep Learning Considering Realistic Measurement Noise
Behrouz Azimian
R. Biswas
A. Pal
L. Tong
14
7
0
09 Nov 2020
On the Number of Linear Functions Composing Deep Neural Network: Towards a Refined Definition of Neural Networks Complexity
Yuuki Takai
Akiyoshi Sannai
Matthieu Cordonnier
80
4
0
23 Oct 2020
A Sequential Framework Towards an Exact SDP Verification of Neural Networks
Ziye Ma
Somayeh Sojoudi
34
8
0
16 Oct 2020
The Ridgelet Prior: A Covariance Function Approach to Prior Specification for Bayesian Neural Networks
Takuo Matsubara
Chris J. Oates
F. Briol
BDL
UQCV
21
17
0
16 Oct 2020
How Powerful are Shallow Neural Networks with Bandlimited Random Weights?
Ming Li
Sho Sonoda
Feilong Cao
Yu Wang
Jiye Liang
11
7
0
19 Aug 2020
Deep learning for photoacoustic imaging: a survey
Changchun Yang
Hengrong Lan
Feng Gao
Fei Gao
VLM
MedIm
22
21
0
10 Aug 2020
Theory of Deep Convolutional Neural Networks II: Spherical Analysis
Zhiying Fang
Han Feng
Shuo Huang
Ding-Xuan Zhou
45
37
0
28 Jul 2020
No one-hidden-layer neural network can represent multivariable functions
Masayo Inoue
Mana Futamura
H. Ninomiya
MLT
13
0
0
19 Jun 2020
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
47
2,490
0
17 Jun 2020
Solving Differential Equations Using Neural Network Solution Bundles
Cedric Wen Flamant
P. Protopapas
David Sondak
20
29
0
17 Jun 2020
Banach Space Representer Theorems for Neural Networks and Ridge Splines
Rahul Parhi
Robert D. Nowak
10
7
0
10 Jun 2020
Activation functions are not needed: the ratio net
Chi-Chun Zhou
Hai-Long Tu
Yue-Jie Hou
Zhen Ling
Yi Liu
Jian Hua
24
0
0
14 May 2020
A survey on modern trainable activation functions
Andrea Apicella
Francesco Donnarumma
Francesco Isgrò
R. Prevete
36
366
0
02 May 2020
Nonconvex regularization for sparse neural networks
Konstantin Pieper
Armenak Petrosyan
21
7
0
24 Apr 2020
A function space analysis of finite neural networks with insights from sampling theory
Raja Giryes
22
6
0
15 Apr 2020
Symmetry & critical points for a model shallow neural network
Yossi Arjevani
M. Field
36
13
0
23 Mar 2020
Universal Function Approximation on Graphs
Rickard Brüel-Gabrielsson
32
6
0
14 Mar 2020
Geometric deep learning for computational mechanics Part I: Anisotropic Hyperelasticity
Nikolaos N. Vlassis
R. Ma
WaiChing Sun
AI4CE
13
170
0
08 Jan 2020
Machine Learning from a Continuous Viewpoint
E. Weinan
Chao Ma
Lei Wu
33
102
0
30 Dec 2019
Misspecified diffusion models with high-frequency observations and an application to neural networks
Teppei Ogihara
11
3
0
26 Dec 2019
Deep learning is adaptive to intrinsic dimensionality of model smoothness in anisotropic Besov space
Taiji Suzuki
Atsushi Nitanda
21
61
0
28 Oct 2019
Neural network integral representations with the ReLU activation function
Armenak Petrosyan
Anton Dereventsov
Clayton Webster
15
22
0
07 Oct 2019
On Universal Equivariant Set Networks
Nimrod Segol
Y. Lipman
3DPC
25
63
0
06 Oct 2019
A Function Space View of Bounded Norm Infinite Width ReLU Nets: The Multivariate Case
Greg Ongie
Rebecca Willett
Daniel Soudry
Nathan Srebro
13
160
0
03 Oct 2019
Compression based bound for non-compressed network: unified generalization error analysis of large compressible deep neural network
Taiji Suzuki
Hiroshi Abe
Tomoaki Nishimura
AI4CE
25
43
0
25 Sep 2019
Effect of Activation Functions on the Training of Overparametrized Neural Nets
A. Panigrahi
Abhishek Shetty
Navin Goyal
19
20
0
16 Aug 2019
Fast generalization error bound of deep learning without scale invariance of activation functions
Y. Terada
Ryoma Hirose
MLT
19
6
0
25 Jul 2019
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
35
111
0
24 Jul 2019
Copula Representations and Error Surface Projections for the Exclusive Or Problem
R. Freedman
9
0
0
08 Jul 2019
ReLU Networks as Surrogate Models in Mixed-Integer Linear Programs
B. Grimstad
H. Andersson
24
139
0
06 Jul 2019
Graph Neural Networks Exponentially Lose Expressive Power for Node Classification
Kenta Oono
Taiji Suzuki
GNN
32
27
0
27 May 2019
Greedy Shallow Networks: An Approach for Constructing and Training Neural Networks
Anton Dereventsov
Armenak Petrosyan
Clayton Webster
15
9
0
24 May 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
16
33
0
23 May 2019
On the minimax optimality and superiority of deep neural network learning over sparse parameter spaces
Satoshi Hayakawa
Taiji Suzuki
6
48
0
22 May 2019
Universal Invariant and Equivariant Graph Neural Networks
Nicolas Keriven
Gabriel Peyré
33
287
0
13 May 2019
Universal approximations of permutation invariant/equivariant functions by deep neural networks
Akiyoshi Sannai
Yuuki Takai
Matthieu Cordonnier
29
67
0
05 Mar 2019
A simple and efficient architecture for trainable activation functions
Andrea Apicella
Francesco Isgrò
R. Prevete
8
36
0
08 Feb 2019
Fast Approximation and Estimation Bounds of Kernel Quadrature for Infinitely Wide Models
Sho Sonoda
21
0
0
02 Feb 2019
Knots in random neural networks
Kevin K. Chen
A. Gamst
Alden Walker
30
4
0
27 Nov 2018
An overview of deep learning in medical imaging focusing on MRI
A. Lundervold
A. Lundervold
OOD
22
1,608
0
25 Nov 2018
Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning
Kursat Rasim Mestav
Jaime Luengo-Rozas
L. Tong
BDL
34
133
0
07 Nov 2018
Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality
Taiji Suzuki
25
243
0
18 Oct 2018
A Gentle Introduction to Deep Learning in Medical Image Processing
Andreas Maier
Christopher Syben
Tobias Lasser
Christian Riess
PINN
11
427
0
12 Oct 2018
Neural Networks Trained to Solve Differential Equations Learn General Representations
M. Magill
F. Qureshi
H. W. Haan
14
64
0
29 Jun 2018
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
57
1,395
0
22 Jun 2018
The global optimum of shallow neural network is attained by ridgelet transform
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
Kei Hagihara
Y. Sawano
Takuo Matsubara
Noboru Murata
14
1
0
19 May 2018
Previous
1
2
3
Next