ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.11832
11
3

Misspecified diffusion models with high-frequency observations and an application to neural networks

26 December 2019
Teppei Ogihara
ArXivPDFHTML
Abstract

We study the asymptotic theory of misspecified models for diffusion processes with noisy nonsynchronous observations. Unlike with correctly specified models, the original maximum-likelihood-type estimator has an asymptotic bias under the misspecified setting and fails to achieve an optimal rate of convergence. To address this, we consider a new quasi-likelihood function that arrows constructing a maximum-likelihood-type estimator that achieves the optimal rate of convergence. Study of misspecified models enables us to apply machine-learning techniques to the maximum-likelihood approach. With these techniques, we can efficiently study the microstructure of a stock market by using rich information of high-frequency data. Neural networks have particularly good compatibility with the maximum-likelihood approach, so we will consider an example of using a neural network for simulation studies and empirical analysis of high-frequency data from the Tokyo Stock Exchange. We demonstrate that the neural network outperforms polynomial models in volatility predictions for major stocks in Tokyo Stock Exchange.

View on arXiv
Comments on this paper