ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.02827
  4. Cited By
On Markov chain Monte Carlo methods for tall data

On Markov chain Monte Carlo methods for tall data

11 May 2015
Rémi Bardenet
Arnaud Doucet
Chris Holmes
ArXivPDFHTML

Papers citing "On Markov chain Monte Carlo methods for tall data"

48 / 48 papers shown
Title
Efficient MCMC Sampling with Expensive-to-Compute and Irregular Likelihoods
Efficient MCMC Sampling with Expensive-to-Compute and Irregular Likelihoods
Conor Rosato
Harvinder Lehal
Simon Maskell
L. Devlin
Malcolm Strens
19
0
0
15 May 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
65
13
0
03 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
49
4
0
14 Oct 2024
Distribution-Aware Mean Estimation under User-level Local Differential
  Privacy
Distribution-Aware Mean Estimation under User-level Local Differential Privacy
Corentin Pla
Hugo Richard
Maxime Vono
FedML
39
0
0
12 Oct 2024
Minibatch Markov chain Monte Carlo Algorithms for Fitting Gaussian
  Processes
Minibatch Markov chain Monte Carlo Algorithms for Fitting Gaussian Processes
Matthew J. Heaton
Jacob A. Johnson
8
1
0
26 Oct 2023
Coreset Markov Chain Monte Carlo
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
29
4
0
25 Oct 2023
Parameter estimation from an Ornstein-Uhlenbeck process with measurement
  noise
Parameter estimation from an Ornstein-Uhlenbeck process with measurement noise
Simon Carter
Lilianne Mujica-Parodi
H. Strey
41
0
0
22 May 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
45
4
0
21 Apr 2023
Deep Variational Free Energy Approach to Dense Hydrogen
Deep Variational Free Energy Approach to Dense Hydrogen
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
32
9
0
13 Sep 2022
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
22
15
0
01 Aug 2022
An optimal transport approach for selecting a representative subsample
  with application in efficient kernel density estimation
An optimal transport approach for selecting a representative subsample with application in efficient kernel density estimation
Jingyi Zhang
Cheng Meng
Jun Yu
Mengrui Zhang
Wenxuan Zhong
Ping Ma
OT
14
12
0
31 May 2022
Bayesian inference via sparse Hamiltonian flows
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
35
14
0
11 Mar 2022
Variational Inference with Locally Enhanced Bounds for Hierarchical
  Models
Variational Inference with Locally Enhanced Bounds for Hierarchical Models
Tomas Geffner
Justin Domke
26
5
0
08 Mar 2022
Optimality in Noisy Importance Sampling
Optimality in Noisy Importance Sampling
F. Llorente
Luca Martino
Jesse Read
D. Delgado
39
5
0
07 Jan 2022
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
36
26
0
20 Dec 2021
Bounding Wasserstein distance with couplings
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
22
8
0
06 Dec 2021
Revealing the Distributional Vulnerability of Discriminators by Implicit
  Generators
Revealing the Distributional Vulnerability of Discriminators by Implicit Generators
Zhilin Zhao
LongBing Cao
Kun-Yu Lin
29
11
0
23 Aug 2021
A Survey of Monte Carlo Methods for Parameter Estimation
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
21
153
0
25 Jul 2021
Variational Bayes in State Space Models: Inferential and Predictive
  Accuracy
Variational Bayes in State Space Models: Inferential and Predictive Accuracy
David T. Frazier
Rubén Loaiza-Maya
G. Martin
11
13
0
23 Jun 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Chunlei Wang
Sanvesh Srivastava
30
9
0
30 May 2021
Propensity-to-Pay: Machine Learning for Estimating Prediction
  Uncertainty
Propensity-to-Pay: Machine Learning for Estimating Prediction Uncertainty
M. A. Bashar
Kieren Astin-Walmsley
Kerina Heath
R. Nayak
11
2
0
27 Aug 2020
Model Fusion with Kullback--Leibler Divergence
Model Fusion with Kullback--Leibler Divergence
Sebastian Claici
Mikhail Yurochkin
S. Ghosh
Justin Solomon
FedML
MoMe
18
33
0
13 Jul 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
118
54
0
23 Mar 2020
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
19
134
0
16 Jul 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and
  Training of Neural Nets
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDL
AI4CE
34
13
0
26 Jun 2019
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
15
37
0
23 May 2019
Differentially Private Markov Chain Monte Carlo
Differentially Private Markov Chain Monte Carlo
Mikko A. Heikkilä
Joonas Jälkö
O. Dikmen
Antti Honkela
27
25
0
29 Jan 2019
An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics
An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics
Liangliang Wang
Shijia Wang
Alexandre Bouchard-Coté
16
32
0
22 Jun 2018
Scalable Bayesian Nonparametric Clustering and Classification
Scalable Bayesian Nonparametric Clustering and Classification
Yang Ni
Peter Muller
M. Diesendruck
Sinead Williamson
Yitan Zhu
Yuan Ji
15
26
0
07 Jun 2018
Accelerating MCMC Algorithms
Accelerating MCMC Algorithms
Christian P. Robert
Victor Elvira
Nicholas G. Tawn
Changye Wu
17
140
0
08 Apr 2018
On the Consistency of Graph-based Bayesian Learning and the Scalability
  of Sampling Algorithms
On the Consistency of Graph-based Bayesian Learning and the Scalability of Sampling Algorithms
Nicolas García Trillos
Zachary T. Kaplan
Thabo Samakhoana
D. Sanz-Alonso
20
19
0
20 Oct 2017
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
24
32
0
26 Sep 2017
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
27
62
0
02 Aug 2017
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large
  Datasets
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets
Florian Maire
Nial Friel
Pierre Alquier
33
14
0
26 Jun 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
25
101
0
16 Jun 2017
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a
  Scalable MCMC Algorithm for the Horseshoe Prior
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a Scalable MCMC Algorithm for the Horseshoe Prior
J. Johndrow
Paulo Orenstein
A. Bhattacharya
34
23
0
02 May 2017
Piecewise Deterministic Markov Processes for Scalable Monte Carlo on
  Restricted Domains
Piecewise Deterministic Markov Processes for Scalable Monte Carlo on Restricted Domains
J. Bierkens
Alexandre Bouchard-Coté
Arnaud Doucet
Andrew B. Duncan
Paul Fearnhead
Thibaut Lienart
Gareth O. Roberts
Sebastian J. Vollmer
24
55
0
16 Jan 2017
Multilevel Monte Carlo for Scalable Bayesian Computations
Multilevel Monte Carlo for Scalable Bayesian Computations
M. Giles
Tigran Nagapetyan
Lukasz Szpruch
Sebastian J. Vollmer
K. Zygalakis
21
9
0
15 Sep 2016
Quasi-stationary Monte Carlo and the ScaLE Algorithm
Quasi-stationary Monte Carlo and the ScaLE Algorithm
M. Pollock
Paul Fearnhead
A. M. Johansen
Gareth O. Roberts
28
18
0
12 Sep 2016
Joining and splitting models with Markov melding
Joining and splitting models with Markov melding
Robert J. B. Goudie
A. Presanis
David J. Lunn
Daniela De Angelis
L. Wernisch
25
29
0
22 Jul 2016
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
58
231
0
11 Jul 2016
Coresets for Scalable Bayesian Logistic Regression
Coresets for Scalable Bayesian Logistic Regression
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
24
216
0
20 May 2016
Quantifying the accuracy of approximate diffusions and Markov chains
Quantifying the accuracy of approximate diffusions and Markov chains
Jonathan H. Huggins
James Y. Zou
49
29
0
20 May 2016
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov
  Chain Monte Carlo Method
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method
Alexandre Bouchard-Coté
Sebastian J. Vollmer
Arnaud Doucet
29
235
0
08 Oct 2015
Orthogonal parallel MCMC methods for sampling and optimization
Orthogonal parallel MCMC methods for sampling and optimization
Luca Martino
Victor Elvira
D. Luengo
J. Corander
F. Louzada
37
74
0
30 Jul 2015
Scalable Discrete Sampling as a Multi-Armed Bandit Problem
Scalable Discrete Sampling as a Multi-Armed Bandit Problem
Yutian Chen
Zoubin Ghahramani
24
16
0
30 Jun 2015
Perturbation theory for Markov chains via Wasserstein distance
Perturbation theory for Markov chains via Wasserstein distance
Daniel Rudolf
Nikolaus Schweizer
40
107
0
13 Mar 2015
Coupled MCMC with a randomized acceptance probability
Coupled MCMC with a randomized acceptance probability
Geoff K. Nicholls
C. Fox
Alexis Muir Watt
45
41
0
30 May 2012
1