ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.05671
  4. Cited By
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
v1v2v3v4v5v6v7 (latest)

Optimizing Neural Networks with Kronecker-factored Approximate Curvature

19 March 2015
James Martens
Roger C. Grosse
    ODL
ArXiv (abs)PDFHTML

Papers citing "Optimizing Neural Networks with Kronecker-factored Approximate Curvature"

50 / 645 papers shown
Title
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
78
11
0
06 Oct 2021
Scale-invariant Learning by Physics Inversion
Scale-invariant Learning by Physics Inversion
Philipp Holl
V. Koltun
Nils Thuerey
PINNAI4CE
76
9
0
30 Sep 2021
Deep Neural Compression Via Concurrent Pruning and Self-Distillation
Deep Neural Compression Via Concurrent Pruning and Self-Distillation
J. Ó. Neill
Sourav Dutta
H. Assem
VLM
41
5
0
30 Sep 2021
Second-Order Neural ODE Optimizer
Second-Order Neural ODE Optimizer
Guan-Horng Liu
T. Chen
Evangelos A. Theodorou
77
15
0
29 Sep 2021
Stochastic Training is Not Necessary for Generalization
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
175
76
0
29 Sep 2021
Introspective Robot Perception using Smoothed Predictions from Bayesian
  Neural Networks
Introspective Robot Perception using Smoothed Predictions from Bayesian Neural Networks
Jianxiang Feng
M. Durner
Zoltán-Csaba Márton
Ferenc Bálint-Benczédi
Rudolph Triebel
UQCVBDL
84
11
0
27 Sep 2021
Recent Advances of Continual Learning in Computer Vision: An Overview
Recent Advances of Continual Learning in Computer Vision: An Overview
Haoxuan Qu
Hossein Rahmani
Li Xu
Bryan M. Williams
Jun Liu
VLMCLL
136
78
0
23 Sep 2021
Training Algorithm Matters for the Performance of Neural Network
  Potential: A Case Study of Adam and the Kalman Filter Optimizers
Training Algorithm Matters for the Performance of Neural Network Potential: A Case Study of Adam and the Kalman Filter Optimizers
Yunqi Shao
Florian M. Dietrich
Carl Nettelblad
Chao Zhang
37
12
0
08 Sep 2021
Revisiting Recursive Least Squares for Training Deep Neural Networks
Revisiting Recursive Least Squares for Training Deep Neural Networks
Chunyuan Zhang
Qi Song
Hui Zhou
Yi-gui Ou
Hongyao Deng
Laurence Yang
ODL
24
7
0
07 Sep 2021
Fishr: Invariant Gradient Variances for Out-of-Distribution
  Generalization
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
Alexandre Ramé
Corentin Dancette
Matthieu Cord
OOD
146
211
0
07 Sep 2021
Analytic natural gradient updates for Cholesky factor in Gaussian
  variational approximation
Analytic natural gradient updates for Cholesky factor in Gaussian variational approximation
Linda S. L. Tan
108
13
0
01 Sep 2021
Learning Practically Feasible Policies for Online 3D Bin Packing
Learning Practically Feasible Policies for Online 3D Bin Packing
Hang Zhao
Chenyang Zhu
Xin Xu
Hui Huang
Kai Xu
OffRL
89
84
0
31 Aug 2021
The Number of Steps Needed for Nonconvex Optimization of a Deep Learning
  Optimizer is a Rational Function of Batch Size
The Number of Steps Needed for Nonconvex Optimization of a Deep Learning Optimizer is a Rational Function of Batch Size
Hideaki Iiduka
79
2
0
26 Aug 2021
Batch Normalization Preconditioning for Neural Network Training
Batch Normalization Preconditioning for Neural Network Training
Susanna Lange
Kyle E. Helfrich
Qiang Ye
68
9
0
02 Aug 2021
Sparse Bayesian Deep Learning for Dynamic System Identification
Sparse Bayesian Deep Learning for Dynamic System Identification
Hongpeng Zhou
Chahine Ibrahim
W. Zheng
Wei Pan
BDL
48
26
0
27 Jul 2021
Structured second-order methods via natural gradient descent
Structured second-order methods via natural gradient descent
Wu Lin
Frank Nielsen
Mohammad Emtiyaz Khan
Mark Schmidt
ODL
60
10
0
22 Jul 2021
Accelerating Distributed K-FAC with Smart Parallelism of Computing and
  Communication Tasks
Accelerating Distributed K-FAC with Smart Parallelism of Computing and Communication Tasks
Shaoshuai Shi
Lin Zhang
Yue Liu
123
9
0
14 Jul 2021
L2M: Practical posterior Laplace approximation with optimization-driven
  second moment estimation
L2M: Practical posterior Laplace approximation with optimization-driven second moment estimation
C. Perone
Roberto Silveira
Thomas S. Paula
ODLUQCV
59
2
0
09 Jul 2021
On the Variance of the Fisher Information for Deep Learning
On the Variance of the Fisher Information for Deep Learning
Alexander Soen
Ke Sun
FedMLFAtt
71
18
0
09 Jul 2021
M-FAC: Efficient Matrix-Free Approximations of Second-Order Information
M-FAC: Efficient Matrix-Free Approximations of Second-Order Information
Elias Frantar
Eldar Kurtic
Dan Alistarh
88
59
0
07 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
242
1,178
0
07 Jul 2021
KAISA: An Adaptive Second-Order Optimizer Framework for Deep Neural
  Networks
KAISA: An Adaptive Second-Order Optimizer Framework for Deep Neural Networks
J. G. Pauloski
Qi Huang
Lei Huang
Shivaram Venkataraman
Kyle Chard
Ian Foster
Zhao-jie Zhang
86
29
0
04 Jul 2021
Analytic Insights into Structure and Rank of Neural Network Hessian Maps
Analytic Insights into Structure and Rank of Neural Network Hessian Maps
Sidak Pal Singh
Gregor Bachmann
Thomas Hofmann
FAtt
107
37
0
30 Jun 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDLUQCV
256
316
0
28 Jun 2021
Rayleigh-Gauss-Newton optimization with enhanced sampling for
  variational Monte Carlo
Rayleigh-Gauss-Newton optimization with enhanced sampling for variational Monte Carlo
R. Webber
M. Lindsey
117
6
0
19 Jun 2021
NoiseGrad: Enhancing Explanations by Introducing Stochasticity to Model
  Weights
NoiseGrad: Enhancing Explanations by Introducing Stochasticity to Model Weights
Kirill Bykov
Anna Hedström
Shinichi Nakajima
Marina M.-C. Höhne
FAtt
95
35
0
18 Jun 2021
Natural continual learning: success is a journey, not (just) a
  destination
Natural continual learning: success is a journey, not (just) a destination
Ta-Chu Kao
Kristopher T. Jensen
Gido M. van de Ven
A. Bernacchia
Guillaume Hennequin
CLL
117
49
0
15 Jun 2021
Credit Assignment in Neural Networks through Deep Feedback Control
Credit Assignment in Neural Networks through Deep Feedback Control
Alexander Meulemans
Matilde Tristany Farinha
Javier García Ordónez
Pau Vilimelis Aceituno
João Sacramento
Benjamin Grewe
102
37
0
15 Jun 2021
NG+ : A Multi-Step Matrix-Product Natural Gradient Method for Deep
  Learning
NG+ : A Multi-Step Matrix-Product Natural Gradient Method for Deep Learning
Minghan Yang
Dong Xu
Qiwen Cui
Zaiwen Wen
Pengxiang Xu
48
4
0
14 Jun 2021
LocoProp: Enhancing BackProp via Local Loss Optimization
LocoProp: Enhancing BackProp via Local Loss Optimization
Ehsan Amid
Rohan Anil
Manfred K. Warmuth
ODL
56
20
0
11 Jun 2021
Quantum Speedup of Natural Gradient for Variational Bayes
Quantum Speedup of Natural Gradient for Variational Bayes
A. Lopatnikova
Minh-Ngoc Tran
BDL
119
3
0
10 Jun 2021
Pulling back information geometry
Pulling back information geometry
Georgios Arvanitidis
Miguel González Duque
Alison Pouplin
Dimitris Kalatzis
Søren Hauberg
DRL
76
17
0
09 Jun 2021
TENGraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block
  Inversion
TENGraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block Inversion
Saeed Soori
Bugra Can
Baourun Mu
Mert Gurbuzbalaban
M. Dehnavi
98
10
0
07 Jun 2021
Interactive Label Cleaning with Example-based Explanations
Interactive Label Cleaning with Example-based Explanations
Stefano Teso
A. Bontempelli
Fausto Giunchiglia
Andrea Passerini
120
48
0
07 Jun 2021
Tensor Normal Training for Deep Learning Models
Tensor Normal Training for Deep Learning Models
Yi Ren
Shiqian Ma
105
28
0
05 Jun 2021
ViViT: Curvature access through the generalized Gauss-Newton's low-rank
  structure
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure
Felix Dangel
Lukas Tatzel
Philipp Hennig
91
13
0
04 Jun 2021
A Generalizable Approach to Learning Optimizers
A Generalizable Approach to Learning Optimizers
Diogo Almeida
Clemens Winter
Jie Tang
Wojciech Zaremba
AI4CE
93
29
0
02 Jun 2021
Concurrent Adversarial Learning for Large-Batch Training
Concurrent Adversarial Learning for Large-Batch Training
Yong Liu
Xiangning Chen
Minhao Cheng
Cho-Jui Hsieh
Yang You
ODL
87
13
0
01 Jun 2021
Training With Data Dependent Dynamic Learning Rates
Training With Data Dependent Dynamic Learning Rates
Shreyas Saxena
Nidhi Vyas
D. DeCoste
ODL
24
1
0
27 May 2021
Solving the electronic Schrödinger equation for multiple nuclear
  geometries with weight-sharing deep neural networks
Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks
Michael Scherbela
Rafael Reisenhofer
Leon Gerard
P. Marquetand
Philipp Grohs
76
51
0
18 May 2021
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation
  Perspective
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective
Florin Gogianu
Tudor Berariu
Mihaela Rosca
Claudia Clopath
L. Buşoniu
Razvan Pascanu
86
56
0
11 May 2021
Dynamic Game Theoretic Neural Optimizer
Dynamic Game Theoretic Neural Optimizer
Guan-Horng Liu
T. Chen
Evangelos A. Theodorou
AI4CE
63
4
0
08 May 2021
Noether's Learning Dynamics: Role of Symmetry Breaking in Neural
  Networks
Noether's Learning Dynamics: Role of Symmetry Breaking in Neural Networks
Hidenori Tanaka
D. Kunin
113
31
0
06 May 2021
Analyzing Monotonic Linear Interpolation in Neural Network Loss
  Landscapes
Analyzing Monotonic Linear Interpolation in Neural Network Loss Landscapes
James Lucas
Juhan Bae
Michael Ruogu Zhang
Stanislav Fort
R. Zemel
Roger C. Grosse
MoMe
242
28
0
22 Apr 2021
Scalable Marginal Likelihood Estimation for Model Selection in Deep
  Learning
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning
Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar Rätsch
Mohammad Emtiyaz Khan
BDLUQCV
153
109
0
11 Apr 2021
Exact Stochastic Second Order Deep Learning
Exact Stochastic Second Order Deep Learning
F. Mehouachi
C. Kasmi
ODL
19
1
0
08 Apr 2021
Robust Trust Region for Weakly Supervised Segmentation
Robust Trust Region for Weakly Supervised Segmentation
D. Marin
Yuri Boykov
UQCV
58
2
0
05 Apr 2021
Exploiting Invariance in Training Deep Neural Networks
Exploiting Invariance in Training Deep Neural Networks
Chengxi Ye
Xiong Zhou
Tristan McKinney
Yanfeng Liu
Qinggang Zhou
Fedor Zhdanov
27
4
0
30 Mar 2021
A Distributed Optimisation Framework Combining Natural Gradient with
  Hessian-Free for Discriminative Sequence Training
A Distributed Optimisation Framework Combining Natural Gradient with Hessian-Free for Discriminative Sequence Training
Adnan Haider
Chao Zhang
Florian Kreyssig
P. Woodland
112
7
0
12 Mar 2021
Second-order step-size tuning of SGD for non-convex optimization
Second-order step-size tuning of SGD for non-convex optimization
Camille Castera
Jérôme Bolte
Cédric Févotte
Edouard Pauwels
ODL
58
10
0
05 Mar 2021
Previous
123...789...111213
Next