Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1503.05671
Cited By
v1
v2
v3
v4
v5
v6
v7 (latest)
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
19 March 2015
James Martens
Roger C. Grosse
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimizing Neural Networks with Kronecker-factored Approximate Curvature"
50 / 645 papers shown
Title
Mirror descent of Hopfield model
Hyungjoon Soh
D. Kim
Juno Hwang
Junghyo Jo
74
0
0
29 Nov 2022
Exploring Temporal Information Dynamics in Spiking Neural Networks
Youngeun Kim
Yuhang Li
Hyoungseob Park
Yeshwanth Venkatesha
Anna Hambitzer
Priyadarshini Panda
93
35
0
26 Nov 2022
PipeFisher: Efficient Training of Large Language Models Using Pipelining and Fisher Information Matrices
Kazuki Osawa
Shigang Li
Torsten Hoefler
AI4CE
84
26
0
25 Nov 2022
A Self-Attention Ansatz for Ab-initio Quantum Chemistry
Ingrid von Glehn
J. Spencer
David Pfau
69
68
0
24 Nov 2022
Integral Continual Learning Along the Tangent Vector Field of Tasks
Tianlin Liu
Aditya Golatkar
Stefano Soatto
Alessandro Achille
CLL
69
3
0
23 Nov 2022
Understanding Sparse Feature Updates in Deep Networks using Iterative Linearisation
Adrian Goldwaser
Hong Ge
MLT
27
0
0
22 Nov 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
140
60
0
17 Nov 2022
Black Box Lie Group Preconditioners for SGD
Xi-Lin Li
59
9
0
08 Nov 2022
Geometry and convergence of natural policy gradient methods
Johannes Muller
Guido Montúfar
97
12
0
03 Nov 2022
Elastic Weight Consolidation Improves the Robustness of Self-Supervised Learning Methods under Transfer
Andrius Ovsianas
Jason Ramapuram
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
29
4
0
28 Oct 2022
Adaptive scaling of the learning rate by second order automatic differentiation
F. Gournay
Alban Gossard
ODL
55
2
0
26 Oct 2022
Federated Learning and Meta Learning: Approaches, Applications, and Directions
Xiaonan Liu
Yansha Deng
Arumugam Nallanathan
M. Bennis
125
40
0
24 Oct 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
83
19
0
23 Oct 2022
HesScale: Scalable Computation of Hessian Diagonals
Mohamed Elsayed
A. R. Mahmood
85
8
0
20 Oct 2022
Brand New K-FACs: Speeding up K-FAC with Online Decomposition Updates
C. Puiu
32
2
0
16 Oct 2022
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Brian Bartoldson
B. Kailkhura
Davis W. Blalock
113
51
0
13 Oct 2022
Component-Wise Natural Gradient Descent -- An Efficient Neural Network Optimization
Tran van Sang
Mhd Irvan
R. Yamaguchi
Toshiyuki Nakata
66
1
0
11 Oct 2022
Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation Approach
Peng Mi
Li Shen
Tianhe Ren
Yiyi Zhou
Xiaoshuai Sun
Rongrong Ji
Dacheng Tao
AAML
123
72
0
11 Oct 2022
Learning to Optimize Quasi-Newton Methods
Isaac Liao
Rumen Dangovski
Jakob N. Foerster
Marin Soljacic
92
4
0
11 Oct 2022
Sampling-based inference for large linear models, with application to linearised Laplace
Javier Antorán
Shreyas Padhy
Riccardo Barbano
Eric T. Nalisnick
David Janz
José Miguel Hernández-Lobato
BDL
53
17
0
10 Oct 2022
Rethinking Normalization Methods in Federated Learning
Zhixu Du
Jingwei Sun
Ang Li
Pin-Yu Chen
Jianyi Zhang
H. Li
Yiran Chen
FedML
65
31
0
07 Oct 2022
Reinforcement Learning Algorithms: An Overview and Classification
Fadi AlMahamid
Katarina Grolinger
39
45
0
29 Sep 2022
Random initialisations performing above chance and how to find them
Frederik Benzing
Simon Schug
Robert Meier
J. Oswald
Yassir Akram
Nicolas Zucchet
Laurence Aitchison
Angelika Steger
ODL
119
26
0
15 Sep 2022
Efficient first-order predictor-corrector multiple objective optimization for fair misinformation detection
Eric Enouen
Katja Mathesius
Sean Wang
Arielle K. Carr
Sihong Xie
51
2
0
15 Sep 2022
Training Neural Networks in Single vs Double Precision
T. Hrycej
Bernhard Bermeitinger
Siegfried Handschuh
28
4
0
15 Sep 2022
Deep Variational Free Energy Approach to Dense Hydrogen
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
92
9
0
13 Sep 2022
If Influence Functions are the Answer, Then What is the Question?
Juhan Bae
Nathan Ng
Alston Lo
Marzyeh Ghassemi
Roger C. Grosse
TDI
124
104
0
12 Sep 2022
Ab-initio quantum chemistry with neural-network wavefunctions
J. Hermann
J. Spencer
Kenny Choo
Antonio Mezzacapo
W. Foulkes
David Pfau
Giuseppe Carleo
Frank Noé
AI4CE
83
86
0
26 Aug 2022
Autonomous Unmanned Aerial Vehicle Navigation using Reinforcement Learning: A Systematic Review
Fadi AlMahamid
Katarina Grolinger
63
76
0
25 Aug 2022
Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning
Elias Frantar
Sidak Pal Singh
Dan Alistarh
MQ
147
245
0
24 Aug 2022
DLCFT: Deep Linear Continual Fine-Tuning for General Incremental Learning
Hyounguk Shon
Janghyeon Lee
Seungwook Kim
Junmo Kim
CLL
67
12
0
17 Aug 2022
Training Overparametrized Neural Networks in Sublinear Time
Yichuan Deng
Han Hu
Zhao Song
Omri Weinstein
Danyang Zhuo
BDL
99
28
0
09 Aug 2022
Improving the Trainability of Deep Neural Networks through Layerwise Batch-Entropy Regularization
David Peer
Bart Keulen
Sebastian Stabinger
J. Piater
A. Rodríguez-Sánchez
46
6
0
01 Aug 2022
Adaptive Second Order Coresets for Data-efficient Machine Learning
Omead Brandon Pooladzandi
David Davini
Baharan Mirzasoleiman
105
65
0
28 Jul 2022
Riemannian Natural Gradient Methods
Jiang Hu
Ruicheng Ao
Anthony Man-Cho So
Minghan Yang
Zaiwen Wen
67
11
0
15 Jul 2022
PoF: Post-Training of Feature Extractor for Improving Generalization
Ikuro Sato
Ryota Yamada
Masayuki Tanaka
Nakamasa Inoue
Rei Kawakami
39
4
0
05 Jul 2022
Randomized K-FACs: Speeding up K-FAC with Randomized Numerical Linear Algebra
C. Puiu
56
2
0
30 Jun 2022
Scalable K-FAC Training for Deep Neural Networks with Distributed Preconditioning
Lin Zhang
Shaoshuai Shi
Wei Wang
Yue Liu
70
10
0
30 Jun 2022
Laplacian Autoencoders for Learning Stochastic Representations
M. Miani
Frederik Warburg
Pablo Moreno-Muñoz
Nicke Skafte Detlefsen
Søren Hauberg
UQCV
BDL
SSL
79
11
0
30 Jun 2022
Positive-definite parametrization of mixed quantum states with deep neural networks
F. Vicentini
R. Rossi
Giuseppe Carleo
36
14
0
27 Jun 2022
Robustness to corruption in pre-trained Bayesian neural networks
Xi Wang
Laurence Aitchison
OOD
UQCV
69
5
0
24 Jun 2022
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
96
5
0
22 Jun 2022
Information Geometry of Dropout Training
Masanari Kimura
H. Hino
46
2
0
22 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
96
31
0
17 Jun 2022
Fast Finite Width Neural Tangent Kernel
Roman Novak
Jascha Narain Sohl-Dickstein
S. Schoenholz
AAML
67
56
0
17 Jun 2022
Faster Optimization on Sparse Graphs via Neural Reparametrization
Nima Dehmamy
C. Both
J. Long
Rose Yu
56
1
0
26 May 2022
O
(
N
2
)
O(N^2)
O
(
N
2
)
Universal Antisymmetry in Fermionic Neural Networks
Tianyu Pang
Shuicheng Yan
Min Lin
57
3
0
26 May 2022
Understanding Programmatic Weak Supervision via Source-aware Influence Function
Jieyu Zhang
Hong Wang
Cheng-Yu Hsieh
Alexander Ratner
TDI
88
12
0
25 May 2022
Symmetry Teleportation for Accelerated Optimization
B. Zhao
Nima Dehmamy
Robin Walters
Rose Yu
ODL
109
24
0
21 May 2022
Gold-standard solutions to the Schrödinger equation using deep learning: How much physics do we need?
Leon Gerard
Michael Scherbela
P. Marquetand
Philipp Grohs
AI4CE
75
37
0
19 May 2022
Previous
1
2
3
...
5
6
7
...
11
12
13
Next