ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.05571
  4. Cited By
GSNs : Generative Stochastic Networks
v1v2 (latest)

GSNs : Generative Stochastic Networks

18 March 2015
Guillaume Alain
Yoshua Bengio
L. Yao
J. Yosinski
Eric Thibodeau-Laufer
Saizheng Zhang
Pascal Vincent
    BDL
ArXiv (abs)PDFHTML

Papers citing "GSNs : Generative Stochastic Networks"

26 / 26 papers shown
Title
Deep Haar Scattering Networks
Deep Haar Scattering Networks
Xiuyuan Cheng
Xu Chen
S. Mallat
80
31
0
30 Sep 2015
On Invariance and Selectivity in Representation Learning
On Invariance and Selectivity in Representation Learning
Fabio Anselmi
Lorenzo Rosasco
T. Poggio
99
105
0
19 Mar 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
312
7,016
0
12 Mar 2015
How transferable are features in deep neural networks?
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
234
8,348
0
06 Nov 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRLBDL
131
2,268
0
30 Oct 2014
Deep Directed Generative Autoencoders
Deep Directed Generative Autoencoders
Sherjil Ozair
Yoshua Bengio
DRL
56
18
0
02 Oct 2014
On the Equivalence Between Deep NADE and Generative Stochastic Networks
On the Equivalence Between Deep NADE and Generative Stochastic Networks
L. Yao
Sherjil Ozair
Kyunghyun Cho
Yoshua Bengio
BDL
66
9
0
02 Sep 2014
Reweighted Wake-Sleep
Reweighted Wake-Sleep
J. Bornschein
Yoshua Bengio
BDL
109
183
0
11 Jun 2014
Deep Supervised and Convolutional Generative Stochastic Network for
  Protein Secondary Structure Prediction
Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction
Jian Zhou
O. Troyanskaya
93
146
0
06 Mar 2014
Neural Variational Inference and Learning in Belief Networks
Neural Variational Inference and Learning in Belief Networks
A. Mnih
Karol Gregor
BDL
198
729
0
31 Jan 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Multimodal Transitions for Generative Stochastic Networks
Multimodal Transitions for Generative Stochastic Networks
Sherjil Ozair
L. Yao
Yoshua Bengio
74
10
0
19 Dec 2013
Bounding the Test Log-Likelihood of Generative Models
Bounding the Test Log-Likelihood of Generative Models
Yoshua Bengio
L. Yao
Kyunghyun Cho
TPM
71
23
0
24 Nov 2013
Deep AutoRegressive Networks
Deep AutoRegressive Networks
Karol Gregor
Ivo Danihelka
A. Mnih
Charles Blundell
Daan Wierstra
AI4TSBDL
102
282
0
31 Oct 2013
Deep Generative Stochastic Networks Trainable by Backprop
Deep Generative Stochastic Networks Trainable by Backprop
Yoshua Bengio
Eric Thibodeau-Laufer
Guillaume Alain
J. Yosinski
BDL
131
396
0
05 Jun 2013
Fast Gradient-Based Inference with Continuous Latent Variable Models in
  Auxiliary Form
Fast Gradient-Based Inference with Continuous Latent Variable Models in Auxiliary Form
Diederik P. Kingma
84
40
0
04 Jun 2013
Generalized Denoising Auto-Encoders as Generative Models
Generalized Denoising Auto-Encoders as Generative Models
Yoshua Bengio
L. Yao
Guillaume Alain
Pascal Vincent
118
540
0
29 May 2013
Estimating or Propagating Gradients Through Stochastic Neurons
Estimating or Propagating Gradients Through Stochastic Neurons
Yoshua Bengio
121
111
0
14 May 2013
A Semantic Matching Energy Function for Learning with Multi-relational
  Data
A Semantic Matching Energy Function for Learning with Multi-relational Data
Xavier Glorot
Antoine Bordes
Jason Weston
Yoshua Bengio
101
694
0
15 Jan 2013
Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep
  Extensions
Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions
Heng Luo
P. Carrier
Aaron Courville
Yoshua Bengio
BDL
84
25
0
24 Nov 2012
What Regularized Auto-Encoders Learn from the Data Generating
  Distribution
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Guillaume Alain
Yoshua Bengio
OODDRL
72
505
0
18 Nov 2012
Better Mixing via Deep Representations
Better Mixing via Deep Representations
Yoshua Bengio
Grégoire Mesnil
Yann N. Dauphin
Salah Rifai
81
341
0
18 Jul 2012
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
463
7,667
0
03 Jul 2012
A Generative Process for Sampling Contractive Auto-Encoders
A Generative Process for Sampling Contractive Auto-Encoders
Salah Rifai
Yoshua Bengio
Yann N. Dauphin
Pascal Vincent
GANDRL
87
51
0
27 Jun 2012
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
278
12,458
0
24 Jun 2012
Sum-Product Networks: A New Deep Architecture
Sum-Product Networks: A New Deep Architecture
Hoifung Poon
Pedro M. Domingos
TPM
81
761
0
14 Feb 2012
1