Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1503.02101
Cited By
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
6 March 2015
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition"
50 / 211 papers shown
Title
Depth Descent Synchronization in
S
O
(
D
)
\mathrm{SO}(D)
SO
(
D
)
Tyler Maunu
Gilad Lerman
MDE
37
2
0
13 Feb 2020
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
13
178
0
09 Feb 2020
Low Rank Saddle Free Newton: A Scalable Method for Stochastic Nonconvex Optimization
Thomas O'Leary-Roseberry
Nick Alger
Omar Ghattas
ODL
37
9
0
07 Feb 2020
Intermittent Pulling with Local Compensation for Communication-Efficient Federated Learning
Yining Qi
Zhihao Qu
Song Guo
Xin Gao
Ruixuan Li
Baoliu Ye
FedML
18
8
0
22 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
35
19
0
31 Dec 2019
Analysis of the Optimization Landscapes for Overcomplete Representation Learning
Qing Qu
Yuexiang Zhai
Xiao Li
Yuqian Zhang
Zhihui Zhu
22
9
0
05 Dec 2019
Shadowing Properties of Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
33
18
0
12 Nov 2019
ISLET: Fast and Optimal Low-rank Tensor Regression via Importance Sketching
Anru R. Zhang
Yuetian Luo
Garvesh Raskutti
M. Yuan
27
44
0
09 Nov 2019
Deep neural network Grad-Shafranov solver constrained with measured magnetic signals
Semin Joung
Jaewook Kim
S. Kwak
J. Bak
S.G. Lee
H. Han
H.S. Kim
Geunho Lee
Daeho Kwon
Y. Ghim
11
50
0
07 Nov 2019
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan
Roman Vershynin
22
35
0
28 Oct 2019
On the Sample Complexity of Actor-Critic Method for Reinforcement Learning with Function Approximation
Harshat Kumar
Alec Koppel
Alejandro Ribeiro
104
79
0
18 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
Quantum algorithm for finding the negative curvature direction in non-convex optimization
Kaining Zhang
Min-hsiu Hsieh
Liu Liu
Dacheng Tao
13
3
0
17 Sep 2019
Short-and-Sparse Deconvolution -- A Geometric Approach
Yenson Lau
Qing Qu
Han-Wen Kuo
Pengcheng Zhou
Yuqian Zhang
John N. Wright
19
29
0
28 Aug 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
31
161
0
25 Aug 2019
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization
Stefan Vlaski
Ali H. Sayed
ODL
26
21
0
19 Aug 2019
Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch Noise
Senwei Liang
Zhongzhan Huang
Mingfu Liang
Haizhao Yang
30
57
0
12 Aug 2019
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal
Sham Kakade
J. Lee
G. Mahajan
13
316
0
01 Aug 2019
SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently for Non-convex Linearly Constrained Problems
Songtao Lu
Meisam Razaviyayn
Bo Yang
Kejun Huang
Mingyi Hong
27
11
0
09 Jul 2019
Distributed Learning in Non-Convex Environments -- Part II: Polynomial Escape from Saddle-Points
Stefan Vlaski
Ali H. Sayed
27
53
0
03 Jul 2019
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
Kaipeng Zhang
Alec Koppel
Haoqi Zhu
Tamer Basar
44
186
0
19 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
J. Lee
Daniel Soudry
Nathan Srebro
30
352
0
13 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
37
185
0
05 Jun 2019
Stochastic Gradients for Large-Scale Tensor Decomposition
T. Kolda
David Hong
28
56
0
04 Jun 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
19
33
0
01 May 2019
Annealing for Distributed Global Optimization
Brian Swenson
S. Kar
H. Vincent Poor
J. M. F. Moura
25
30
0
18 Mar 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
20
22
0
21 Feb 2019
Multi-Dimensional Balanced Graph Partitioning via Projected Gradient Descent
Dmitrii Avdiukhin
S. Pupyrev
G. Yaroslavtsev
17
18
0
10 Feb 2019
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He
Gao Huang
Yang Yuan
ODL
MLT
28
147
0
02 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
55
961
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
21
94
0
24 Jan 2019
A Deterministic Gradient-Based Approach to Avoid Saddle Points
L. Kreusser
Stanley J. Osher
Bao Wang
ODL
32
3
0
21 Jan 2019
Foothill: A Quasiconvex Regularization for Edge Computing of Deep Neural Networks
Mouloud Belbahri
Eyyub Sari
Sajad Darabi
V. Nia
MQ
21
1
0
18 Jan 2019
On the Global Convergence of Imitation Learning: A Case for Linear Quadratic Regulator
Qi Cai
Mingyi Hong
Yongxin Chen
Zhaoran Wang
27
34
0
11 Jan 2019
SGD Converges to Global Minimum in Deep Learning via Star-convex Path
Yi Zhou
Junjie Yang
Huishuai Zhang
Yingbin Liang
Vahid Tarokh
14
71
0
02 Jan 2019
Towards Theoretical Understanding of Large Batch Training in Stochastic Gradient Descent
Xiaowu Dai
Yuhua Zhu
25
11
0
03 Dec 2018
Blind Over-the-Air Computation and Data Fusion via Provable Wirtinger Flow
Jialin Dong
Yuanming Shi
Z. Ding
9
59
0
12 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
44
1,122
0
09 Nov 2018
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
20
51
0
25 Oct 2018
Fault Tolerance in Iterative-Convergent Machine Learning
Aurick Qiao
Bryon Aragam
Bingjing Zhang
Eric Xing
26
41
0
17 Oct 2018
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora
Nadav Cohen
Noah Golowich
Wei Hu
27
281
0
04 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
53
1,250
0
04 Oct 2018
Optimal Adaptive and Accelerated Stochastic Gradient Descent
Qi Deng
Yi Cheng
Guanghui Lan
16
8
0
01 Oct 2018
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
C. J. Li
Mengdi Wang
Han Liu
Tong Zhang
34
12
0
29 Aug 2018
Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
Yi Zhou
Zhe Wang
Yingbin Liang
24
23
0
22 Aug 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
24
131
0
14 Aug 2018
Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile
P. Mertikopoulos
Bruno Lecouat
Houssam Zenati
Chuan-Sheng Foo
V. Chandrasekhar
Georgios Piliouras
34
291
0
07 Jul 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
50
570
0
04 Jul 2018
Previous
1
2
3
4
5
Next