ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.02101
  4. Cited By
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor
  Decomposition

Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition

6 March 2015
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
ArXivPDFHTML

Papers citing "Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition"

50 / 211 papers shown
Title
Depth Descent Synchronization in $\mathrm{SO}(D)$
Depth Descent Synchronization in SO(D)\mathrm{SO}(D)SO(D)
Tyler Maunu
Gilad Lerman
MDE
37
2
0
13 Feb 2020
Better Theory for SGD in the Nonconvex World
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
13
178
0
09 Feb 2020
Low Rank Saddle Free Newton: A Scalable Method for Stochastic Nonconvex
  Optimization
Low Rank Saddle Free Newton: A Scalable Method for Stochastic Nonconvex Optimization
Thomas O'Leary-Roseberry
Nick Alger
Omar Ghattas
ODL
37
9
0
07 Feb 2020
Intermittent Pulling with Local Compensation for Communication-Efficient
  Federated Learning
Intermittent Pulling with Local Compensation for Communication-Efficient Federated Learning
Yining Qi
Zhihao Qu
Song Guo
Xin Gao
Ruixuan Li
Baoliu Ye
FedML
18
8
0
22 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating
  Decreasing Paths to Infinity
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
35
19
0
31 Dec 2019
Analysis of the Optimization Landscapes for Overcomplete Representation
  Learning
Analysis of the Optimization Landscapes for Overcomplete Representation Learning
Qing Qu
Yuexiang Zhai
Xiao Li
Yuqian Zhang
Zhihui Zhu
22
9
0
05 Dec 2019
Shadowing Properties of Optimization Algorithms
Shadowing Properties of Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
33
18
0
12 Nov 2019
ISLET: Fast and Optimal Low-rank Tensor Regression via Importance
  Sketching
ISLET: Fast and Optimal Low-rank Tensor Regression via Importance Sketching
Anru R. Zhang
Yuetian Luo
Garvesh Raskutti
M. Yuan
27
44
0
09 Nov 2019
Deep neural network Grad-Shafranov solver constrained with measured
  magnetic signals
Deep neural network Grad-Shafranov solver constrained with measured magnetic signals
Semin Joung
Jaewook Kim
S. Kwak
J. Bak
S.G. Lee
H. Han
H.S. Kim
Geunho Lee
Daeho Kwon
Y. Ghim
11
50
0
07 Nov 2019
Online Stochastic Gradient Descent with Arbitrary Initialization Solves
  Non-smooth, Non-convex Phase Retrieval
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan
Roman Vershynin
22
35
0
28 Oct 2019
On the Sample Complexity of Actor-Critic Method for Reinforcement
  Learning with Function Approximation
On the Sample Complexity of Actor-Critic Method for Reinforcement Learning with Function Approximation
Harshat Kumar
Alec Koppel
Alejandro Ribeiro
104
79
0
18 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of
  Wide Neural Networks
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
Quantum algorithm for finding the negative curvature direction in
  non-convex optimization
Quantum algorithm for finding the negative curvature direction in non-convex optimization
Kaining Zhang
Min-hsiu Hsieh
Liu Liu
Dacheng Tao
13
3
0
17 Sep 2019
Short-and-Sparse Deconvolution -- A Geometric Approach
Short-and-Sparse Deconvolution -- A Geometric Approach
Yenson Lau
Qing Qu
Han-Wen Kuo
Pengcheng Zhou
Yuqian Zhang
John N. Wright
19
29
0
28 Aug 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and
  Generalization
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
31
161
0
25 Aug 2019
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex
  Optimization
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization
Stefan Vlaski
Ali H. Sayed
ODL
26
21
0
19 Aug 2019
Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch
  Noise
Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch Noise
Senwei Liang
Zhongzhan Huang
Mingfu Liang
Haizhao Yang
30
57
0
12 Aug 2019
On the Theory of Policy Gradient Methods: Optimality, Approximation, and
  Distribution Shift
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal
Sham Kakade
J. Lee
G. Mahajan
13
316
0
01 Aug 2019
SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently
  for Non-convex Linearly Constrained Problems
SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently for Non-convex Linearly Constrained Problems
Songtao Lu
Meisam Razaviyayn
Bo Yang
Kejun Huang
Mingyi Hong
27
11
0
09 Jul 2019
Distributed Learning in Non-Convex Environments -- Part II: Polynomial
  Escape from Saddle-Points
Distributed Learning in Non-Convex Environments -- Part II: Polynomial Escape from Saddle-Points
Stefan Vlaski
Ali H. Sayed
27
53
0
03 Jul 2019
Global Convergence of Policy Gradient Methods to (Almost) Locally
  Optimal Policies
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
Kaipeng Zhang
Alec Koppel
Haoqi Zhu
Tamer Basar
44
186
0
19 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
J. Lee
Daniel Soudry
Nathan Srebro
30
352
0
13 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
37
185
0
05 Jun 2019
Stochastic Gradients for Large-Scale Tensor Decomposition
Stochastic Gradients for Large-Scale Tensor Decomposition
T. Kolda
David Hong
28
56
0
04 Jun 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for
  Regression Problems
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
19
33
0
01 May 2019
Annealing for Distributed Global Optimization
Annealing for Distributed Global Optimization
Brian Swenson
S. Kar
H. Vincent Poor
J. M. F. Moura
25
30
0
18 Mar 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with
  Structured Covariance Noise
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
20
22
0
21 Feb 2019
Multi-Dimensional Balanced Graph Partitioning via Projected Gradient
  Descent
Multi-Dimensional Balanced Graph Partitioning via Projected Gradient Descent
Dmitrii Avdiukhin
S. Pupyrev
G. Yaroslavtsev
17
18
0
10 Feb 2019
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He
Gao Huang
Yang Yuan
ODL
MLT
28
147
0
02 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for
  Overparameterized Two-Layer Neural Networks
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
55
961
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
21
94
0
24 Jan 2019
A Deterministic Gradient-Based Approach to Avoid Saddle Points
A Deterministic Gradient-Based Approach to Avoid Saddle Points
L. Kreusser
Stanley J. Osher
Bao Wang
ODL
32
3
0
21 Jan 2019
Foothill: A Quasiconvex Regularization for Edge Computing of Deep Neural
  Networks
Foothill: A Quasiconvex Regularization for Edge Computing of Deep Neural Networks
Mouloud Belbahri
Eyyub Sari
Sajad Darabi
V. Nia
MQ
21
1
0
18 Jan 2019
On the Global Convergence of Imitation Learning: A Case for Linear
  Quadratic Regulator
On the Global Convergence of Imitation Learning: A Case for Linear Quadratic Regulator
Qi Cai
Mingyi Hong
Yongxin Chen
Zhaoran Wang
27
34
0
11 Jan 2019
SGD Converges to Global Minimum in Deep Learning via Star-convex Path
SGD Converges to Global Minimum in Deep Learning via Star-convex Path
Yi Zhou
Junjie Yang
Huishuai Zhang
Yingbin Liang
Vahid Tarokh
14
71
0
02 Jan 2019
Towards Theoretical Understanding of Large Batch Training in Stochastic
  Gradient Descent
Towards Theoretical Understanding of Large Batch Training in Stochastic Gradient Descent
Xiaowu Dai
Yuhua Zhu
25
11
0
03 Dec 2018
Blind Over-the-Air Computation and Data Fusion via Provable Wirtinger
  Flow
Blind Over-the-Air Computation and Data Fusion via Provable Wirtinger Flow
Jialin Dong
Yuanming Shi
Z. Ding
9
59
0
12 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
44
1,122
0
09 Nov 2018
Subgradient Descent Learns Orthogonal Dictionaries
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
20
51
0
25 Oct 2018
Fault Tolerance in Iterative-Convergent Machine Learning
Fault Tolerance in Iterative-Convergent Machine Learning
Aurick Qiao
Bryon Aragam
Bingjing Zhang
Eric Xing
26
41
0
17 Oct 2018
A Convergence Analysis of Gradient Descent for Deep Linear Neural
  Networks
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora
Nadav Cohen
Noah Golowich
Wei Hu
27
281
0
04 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
53
1,250
0
04 Oct 2018
Optimal Adaptive and Accelerated Stochastic Gradient Descent
Optimal Adaptive and Accelerated Stochastic Gradient Descent
Qi Deng
Yi Cheng
Guanghui Lan
16
8
0
01 Oct 2018
Diffusion Approximations for Online Principal Component Estimation and
  Global Convergence
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
C. J. Li
Mengdi Wang
Han Liu
Tong Zhang
34
12
0
29 Aug 2018
Convergence of Cubic Regularization for Nonconvex Optimization under KL
  Property
Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
Yi Zhou
Zhe Wang
Yingbin Liang
24
23
0
22 Aug 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm,
  Optimality, and Generalization
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
24
131
0
14 Aug 2018
Optimistic mirror descent in saddle-point problems: Going the extra
  (gradient) mile
Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile
P. Mertikopoulos
Bruno Lecouat
Houssam Zenati
Chuan-Sheng Foo
V. Chandrasekhar
Georgios Piliouras
34
291
0
07 Jul 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path
  Integrated Differential Estimator
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
50
570
0
04 Jul 2018
Previous
12345
Next