Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1503.02101
Cited By
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
6 March 2015
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition"
50 / 211 papers shown
Title
Dyn-D
2
^2
2
P: Dynamic Differentially Private Decentralized Learning with Provable Utility Guarantee
Zehan Zhu
Yan Huang
Xin Wang
Shouling Ji
Jinming Xu
26
0
0
10 May 2025
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
45
36
0
13 Apr 2025
A Piecewise Lyapunov Analysis of Sub-quadratic SGD: Applications to Robust and Quantile Regression
Yixuan Zhang
Dongyan
Yudong Chen
Qiaomin Xie
38
0
0
11 Apr 2025
Tensor Methods in High Dimensional Data Analysis: Opportunities and Challenges
Arnab Auddy
Dong Xia
Ming Yuan
AI4CE
50
2
0
28 May 2024
Training-set-free two-stage deep learning for spectroscopic data de-noising
Dongchen Huang
Junde Liu
Tian Qian
Hongming Weng
36
0
0
29 Feb 2024
High Probability Guarantees for Random Reshuffling
Hengxu Yu
Xiao Li
45
2
0
20 Nov 2023
Neural Collapse in Multi-label Learning with Pick-all-label Loss
Pengyu Li
Xiao Li
Yutong Wang
Qing Qu
30
8
0
24 Oct 2023
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
Symmetry & Critical Points for Symmetric Tensor Decomposition Problems
Yossi Arjevani
Gal Vinograd
34
5
0
13 Jun 2023
Correlated Noise in Epoch-Based Stochastic Gradient Descent: Implications for Weight Variances
Marcel Kühn
B. Rosenow
19
3
0
08 Jun 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
34
6
0
25 May 2023
Convergence of Alternating Gradient Descent for Matrix Factorization
R. Ward
T. Kolda
22
6
0
11 May 2023
Convex Dual Theory Analysis of Two-Layer Convolutional Neural Networks with Soft-Thresholding
Chunyan Xiong
Meng Lu
Xiaotong Yu
JIAN-PENG Cao
Zhong Chen
D. Guo
X. Qu
MLT
40
0
0
14 Apr 2023
AGAD: Adversarial Generative Anomaly Detection
Jian Shi
Ni Zhang
21
0
0
09 Apr 2023
Type-II Saddles and Probabilistic Stability of Stochastic Gradient Descent
Liu Ziyin
Botao Li
Tomer Galanti
Masakuni Ueda
37
7
0
23 Mar 2023
Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks
Arun Ganesh
Daogao Liu
Sewoong Oh
Abhradeep Thakurta
ODL
27
12
0
20 Feb 2023
Almost Sure Saddle Avoidance of Stochastic Gradient Methods without the Bounded Gradient Assumption
Jun Liu
Ye Yuan
ODL
19
1
0
15 Feb 2023
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
Jikai Jin
Zhiyuan Li
Kaifeng Lyu
S. Du
Jason D. Lee
MLT
54
34
0
27 Jan 2023
An SDE for Modeling SAM: Theory and Insights
Enea Monzio Compagnoni
Luca Biggio
Antonio Orvieto
F. Proske
Hans Kersting
Aurelien Lucchi
25
13
0
19 Jan 2023
Escaping Saddle Points for Effective Generalization on Class-Imbalanced Data
Harsh Rangwani
Sumukh K Aithal
Mayank Mishra
R. Venkatesh Babu
31
29
0
28 Dec 2022
Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis
Quoc Tran-Dinh
Marten van Dijk
34
0
0
19 Dec 2022
Decentralized Nonconvex Optimization with Guaranteed Privacy and Accuracy
Yongqiang Wang
Tamer Basar
26
21
0
14 Dec 2022
A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces
Charline Le Lan
Joshua Greaves
Jesse Farebrother
Mark Rowland
Fabian Pedregosa
Rishabh Agarwal
Marc G. Bellemare
52
8
0
08 Dec 2022
Generalized Gradient Flows with Provable Fixed-Time Convergence and Fast Evasion of Non-Degenerate Saddle Points
Mayank Baranwal
Param Budhraja
V. Raj
A. Hota
33
2
0
07 Dec 2022
Adap DP-FL: Differentially Private Federated Learning with Adaptive Noise
Jie Fu
Zhili Chen
Xiao Han
FedML
25
28
0
29 Nov 2022
Data-Adaptive Discriminative Feature Localization with Statistically Guaranteed Interpretation
Ben Dai
Xiaotong Shen
Lingzhi Chen
Chunlin Li
Wei Pan
FAtt
21
1
0
18 Nov 2022
Escaping From Saddle Points Using Asynchronous Coordinate Gradient Descent
Marco Bornstein
Jin-Peng Liu
Jingling Li
Furong Huang
21
0
0
17 Nov 2022
Passage-Mask: A Learnable Regularization Strategy for Retriever-Reader Models
Shujian Zhang
Chengyue Gong
Xingchao Liu
RALM
49
6
0
02 Nov 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
170
68
0
27 Oct 2022
Networked Signal and Information Processing
Stefan Vlaski
S. Kar
Ali H. Sayed
José M. F. Moura
49
16
0
25 Oct 2022
The Dynamics of Sharpness-Aware Minimization: Bouncing Across Ravines and Drifting Towards Wide Minima
Peter L. Bartlett
Philip M. Long
Olivier Bousquet
76
34
0
04 Oct 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
35
7
0
04 Oct 2022
Are All Losses Created Equal: A Neural Collapse Perspective
Jinxin Zhou
Chong You
Xiao Li
Kangning Liu
Sheng Liu
Qing Qu
Zhihui Zhu
36
59
0
04 Oct 2022
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
24
6
0
29 Sep 2022
On Quantum Speedups for Nonconvex Optimization via Quantum Tunneling Walks
Yizhou Liu
Weijie J. Su
Tongyang Li
36
18
0
29 Sep 2022
Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold
Can Yaras
Peng Wang
Zhihui Zhu
Laura Balzano
Qing Qu
25
42
0
19 Sep 2022
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
59
52
0
12 Sep 2022
Implicit Full Waveform Inversion with Deep Neural Representation
Jian Sun
K. Innanen
AI4CE
40
32
0
08 Sep 2022
On the generalization of learning algorithms that do not converge
N. Chandramoorthy
Andreas Loukas
Khashayar Gatmiry
Stefanie Jegelka
MLT
19
11
0
16 Aug 2022
A Gradient Smoothed Functional Algorithm with Truncated Cauchy Random Perturbations for Stochastic Optimization
Akash Mondal
A. PrashanthL.
S. Bhatnagar
19
2
0
30 Jul 2022
High-dimensional limit theorems for SGD: Effective dynamics and critical scaling
Gerard Ben Arous
Reza Gheissari
Aukosh Jagannath
62
58
0
08 Jun 2022
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
G. Zhang
S. Fattahi
Richard Y. Zhang
62
23
0
07 Jun 2022
Uniform Generalization Bound on Time and Inverse Temperature for Gradient Descent Algorithm and its Application to Analysis of Simulated Annealing
Keisuke Suzuki
AI4CE
33
0
0
25 May 2022
Weak Convergence of Approximate reflection coupling and its Application to Non-convex Optimization
Keisuke Suzuki
36
5
0
24 May 2022
Estimation and Inference by Stochastic Optimization
Jean-Jacques Forneron
32
5
0
06 May 2022
Randomized Policy Optimization for Optimal Stopping
Xinyi Guan
V. Mišić
19
2
0
25 Mar 2022
Leveraging Randomized Smoothing for Optimal Control of Nonsmooth Dynamical Systems
Quentin Le Lidec
Fabian Schramm
Louis Montaut
Cordelia Schmid
Ivan Laptev
Justin Carpentier
38
24
0
08 Mar 2022
A Robust Spectral Algorithm for Overcomplete Tensor Decomposition
Samuel B. Hopkins
T. Schramm
Jonathan Shi
27
23
0
05 Mar 2022
On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features
Jinxin Zhou
Xiao Li
Tian Ding
Chong You
Qing Qu
Zhihui Zhu
30
99
0
02 Mar 2022
Robust Training under Label Noise by Over-parameterization
Sheng Liu
Zhihui Zhu
Qing Qu
Chong You
NoLa
OOD
27
106
0
28 Feb 2022
1
2
3
4
5
Next