Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1503.01673
Cited By
High Dimensional Bayesian Optimisation and Bandits via Additive Models
5 March 2015
Kirthevasan Kandasamy
J. Schneider
Barnabás Póczós
Re-assign community
ArXiv
PDF
HTML
Papers citing
"High Dimensional Bayesian Optimisation and Bandits via Additive Models"
50 / 72 papers shown
Title
Learning Low-Dimensional Embeddings for Black-Box Optimization
Riccardo Busetto
Manas Mejari
Marco Forgione
Alberto Bemporad
Dario Piga
19
0
0
02 May 2025
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
77
9
0
17 Feb 2025
Cliqueformer: Model-Based Optimization with Structured Transformers
J. Kuba
Pieter Abbeel
Sergey Levine
OffRL
AI4CE
62
2
0
17 Oct 2024
Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Dawei Zhan
54
5
0
18 Apr 2024
Bayesian Optimization with Adaptive Kernels for Robot Control
Ruben Martinez-Cantin
14
37
0
10 Feb 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
34
17
0
03 Feb 2024
Deep Kernel and Image Quality Estimators for Optimizing Robotic Ultrasound Controller using Bayesian Optimization
Deepak Raina
S. Chandrashekhara
Richard M. Voyles
J. Wachs
S. K. Saha
45
6
0
11 Oct 2023
Representing Additive Gaussian Processes by Sparse Matrices
Lu Zou
Haoyuan Chen
Liang Ding
28
0
0
29 Apr 2023
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces
Leonard Papenmeier
Luigi Nardi
Matthias Poloczek
24
36
0
22 Apr 2023
Active Learning and Bayesian Optimization: a Unified Perspective to Learn with a Goal
Francesco Di Fiore
Michela Nardelli
L. Mainini
37
22
0
02 Mar 2023
Unleashing the Potential of Acquisition Functions in High-Dimensional Bayesian Optimization
Jiayu Zhao
Renyu Yang
Shenghao Qiu
Zheng Wang
16
4
0
16 Feb 2023
Scalable Bayesian optimization with high-dimensional outputs using randomized prior networks
Mohamed Aziz Bhouri
M. Joly
Robert Yu
S. Sarkar
P. Perdikaris
BDL
UQCV
AI4CE
19
1
0
14 Feb 2023
Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning
Volodymyr Tkachuk
Seyed Alireza Bakhtiari
Johannes Kirschner
Matej Jusup
Ilija Bogunovic
Csaba Szepesvári
32
4
0
08 Feb 2023
Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian Regret Bounds
Shion Takeno
Yu Inatsu
Masayuki Karasuyama
30
13
0
03 Feb 2023
Robust Bayesian Target Value Optimization
J. G. Hoffer
Sascha Ranftl
Bernhard C. Geiger
25
9
0
11 Jan 2023
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Investigating Bayesian optimization for expensive-to-evaluate black box functions: Application in fluid dynamics
Mike Diessner
Joseph O’Connor
A. Wynn
S. Laizet
Yu Guan
Kevin J. Wilson
Richard D. Whalley
36
18
0
19 Jul 2022
Graph Neural Network Bandits
Parnian Kassraie
Andreas Krause
Ilija Bogunovic
26
11
0
13 Jul 2022
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
40
200
0
07 Jun 2022
Cooperative Multi-Agent Trajectory Generation with Modular Bayesian Optimization
Gilhyun Ryou
E. Tal
S. Karaman
26
4
0
01 Jun 2022
A model aggregation approach for high-dimensional large-scale optimization
Haowei Wang
Ercong Zhang
Szu Hui Ng
Giulia Pedrielli
22
1
0
16 May 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
21
10
0
02 Mar 2022
Parallel MCMC Without Embarrassing Failures
Daniel Augusto R. M. A. de Souza
Diego Mesquita
Samuel Kaski
Luigi Acerbi
42
11
0
22 Feb 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
61
69
0
28 Jan 2022
Scaling Bayesian Optimization With Game Theory
L. Mathesen
G. Pedrielli
R. L. Smith
19
1
0
07 Oct 2021
Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
22
105
0
22 Sep 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian Modeling
Kai Wang
Bryan Wilder
S. Suen
B. Dilkina
Milind Tambe
124
0
0
07 Jul 2021
A hyperparameter-tuning approach to automated inverse planning
Kelsey Maass
Aleksandr Aravkin
Minsun Kim
22
3
0
14 May 2021
Bayesian Optimistic Optimisation with Exponentially Decaying Regret
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
13
3
0
10 May 2021
Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression
Christian Fiedler
C. Scherer
Sebastian Trimpe
GP
26
65
0
06 May 2021
Continuous black-box optimization with quantum annealing and random subspace coding
Syun Izawa
Koki Kitai
Shu Tanaka
R. Tamura
Koji Tsuda
13
3
0
30 Apr 2021
Revisiting Bayesian Optimization in the light of the COCO benchmark
Rodolphe Le Riche
Victor Picheny
19
26
0
30 Mar 2021
Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate models
Jeroen van Hoof
Joaquin Vanschoren
BDL
38
9
0
06 Jan 2021
Good practices for Bayesian Optimization of high dimensional structured spaces
E. Siivola
Javier I. González
Andrei Paleyes
Aki Vehtari
30
37
0
31 Dec 2020
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models
E. Han
Ishank Arora
Jonathan Scarlett
TPM
AI4CE
33
17
0
24 Dec 2020
Online Learning Demands in Max-min Fairness
Kirthevasan Kandasamy
Gur-Eyal Sela
Joseph E. Gonzalez
Michael I. Jordan
Ion Stoica
FaML
11
15
0
15 Dec 2020
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
40
126
0
01 Jul 2020
Additive Tree-Structured Covariance Function for Conditional Parameter Spaces in Bayesian Optimization
Xingchen Ma
Matthew B. Blaschko
21
7
0
21 Jun 2020
ENTMOOT: A Framework for Optimization over Ensemble Tree Models
Alexander Thebelt
Jan Kronqvist
Miten Mistry
Robert M. Lee
Nathan Sudermann-Merx
Ruth Misener
29
54
0
10 Mar 2020
Corruption-Tolerant Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
Jonathan Scarlett
30
51
0
04 Mar 2020
Distributionally Robust Bayesian Optimization
Johannes Kirschner
Ilija Bogunovic
Stefanie Jegelka
Andreas Krause
30
77
0
20 Feb 2020
Bayesian Optimization for Policy Search in High-Dimensional Systems via Automatic Domain Selection
Lukas P. Frohlich
Edgar D. Klenske
Christian Daniel
Melanie Zeilinger
18
12
0
21 Jan 2020
Randomly Projected Additive Gaussian Processes for Regression
Ian A. Delbridge
D. Bindel
A. Wilson
27
27
0
30 Dec 2019
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
22
14
0
27 Nov 2019
Autonomous discovery of battery electrolytes with robotic experimentation and machine-learning
Adarsh Dave
Jared M. Mitchell
Kirthevasan Kandasamy
S. Burke
Biswajit Paria
Barnabás Póczós
J. Whitacre
V. Viswanathan
41
119
0
22 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
48
450
0
03 Oct 2019
High Dimensional Bayesian Optimization via Supervised Dimension Reduction
Miao Zhang
Huiqi Li
Steven W. Su
19
44
0
21 Jul 2019
Bayesian Optimization on Large Graphs via a Graph Convolutional Generative Model: Application in Cardiac Model Personalization
Jwala Dhamala
S. Ghimire
J. Sapp
B. Horácek
Linwei Wang
MedIm
39
12
0
01 Jul 2019
1
2
Next