ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.01673
  4. Cited By
High Dimensional Bayesian Optimisation and Bandits via Additive Models

High Dimensional Bayesian Optimisation and Bandits via Additive Models

5 March 2015
Kirthevasan Kandasamy
J. Schneider
Barnabás Póczós
ArXivPDFHTML

Papers citing "High Dimensional Bayesian Optimisation and Bandits via Additive Models"

50 / 71 papers shown
Title
Learning Low-Dimensional Embeddings for Black-Box Optimization
Learning Low-Dimensional Embeddings for Black-Box Optimization
Riccardo Busetto
Manas Mejari
Marco Forgione
Alberto Bemporad
Dario Piga
19
0
0
02 May 2025
Misspecification-robust likelihood-free inference in high dimensions
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
77
9
0
17 Feb 2025
Cliqueformer: Model-Based Optimization with Structured Transformers
Cliqueformer: Model-Based Optimization with Structured Transformers
J. Kuba
Pieter Abbeel
Sergey Levine
OffRL
AI4CE
62
2
0
17 Oct 2024
Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Dawei Zhan
54
5
0
18 Apr 2024
Bayesian Optimization with Adaptive Kernels for Robot Control
Bayesian Optimization with Adaptive Kernels for Robot Control
Ruben Martinez-Cantin
14
37
0
10 Feb 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
34
17
0
03 Feb 2024
Deep Kernel and Image Quality Estimators for Optimizing Robotic
  Ultrasound Controller using Bayesian Optimization
Deep Kernel and Image Quality Estimators for Optimizing Robotic Ultrasound Controller using Bayesian Optimization
Deepak Raina
S. Chandrashekhara
Richard M. Voyles
J. Wachs
S. K. Saha
45
6
0
11 Oct 2023
Representing Additive Gaussian Processes by Sparse Matrices
Representing Additive Gaussian Processes by Sparse Matrices
Lu Zou
Haoyuan Chen
Liang Ding
28
0
0
29 Apr 2023
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in
  Nested Subspaces
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces
Leonard Papenmeier
Luigi Nardi
Matthias Poloczek
24
36
0
22 Apr 2023
Active Learning and Bayesian Optimization: a Unified Perspective to
  Learn with a Goal
Active Learning and Bayesian Optimization: a Unified Perspective to Learn with a Goal
Francesco Di Fiore
Michela Nardelli
L. Mainini
37
22
0
02 Mar 2023
Unleashing the Potential of Acquisition Functions in High-Dimensional
  Bayesian Optimization
Unleashing the Potential of Acquisition Functions in High-Dimensional Bayesian Optimization
Jiayu Zhao
Renyu Yang
Shenghao Qiu
Zheng Wang
16
4
0
16 Feb 2023
Scalable Bayesian optimization with high-dimensional outputs using
  randomized prior networks
Scalable Bayesian optimization with high-dimensional outputs using randomized prior networks
Mohamed Aziz Bhouri
M. Joly
Robert Yu
S. Sarkar
P. Perdikaris
BDL
UQCV
AI4CE
19
1
0
14 Feb 2023
Efficient Planning in Combinatorial Action Spaces with Applications to
  Cooperative Multi-Agent Reinforcement Learning
Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning
Volodymyr Tkachuk
Seyed Alireza Bakhtiari
Johannes Kirschner
Matej Jusup
Ilija Bogunovic
Csaba Szepesvári
32
4
0
08 Feb 2023
Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian
  Regret Bounds
Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian Regret Bounds
Shion Takeno
Yu Inatsu
Masayuki Karasuyama
30
13
0
03 Feb 2023
Robust Bayesian Target Value Optimization
Robust Bayesian Target Value Optimization
J. G. Hoffer
Sascha Ranftl
Bernhard C. Geiger
25
9
0
11 Jan 2023
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Investigating Bayesian optimization for expensive-to-evaluate black box
  functions: Application in fluid dynamics
Investigating Bayesian optimization for expensive-to-evaluate black box functions: Application in fluid dynamics
Mike Diessner
Joseph O’Connor
A. Wynn
S. Laizet
Yu Guan
Kevin J. Wilson
Richard D. Whalley
36
18
0
19 Jul 2022
Graph Neural Network Bandits
Graph Neural Network Bandits
Parnian Kassraie
Andreas Krause
Ilija Bogunovic
26
11
0
13 Jul 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
40
200
0
07 Jun 2022
Cooperative Multi-Agent Trajectory Generation with Modular Bayesian
  Optimization
Cooperative Multi-Agent Trajectory Generation with Modular Bayesian Optimization
Gilhyun Ryou
E. Tal
S. Karaman
26
4
0
01 Jun 2022
A model aggregation approach for high-dimensional large-scale
  optimization
A model aggregation approach for high-dimensional large-scale optimization
Haowei Wang
Ercong Zhang
Szu Hui Ng
Giulia Pedrielli
22
1
0
16 May 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian
  Processes
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
21
10
0
02 Mar 2022
Parallel MCMC Without Embarrassing Failures
Parallel MCMC Without Embarrassing Failures
Daniel Augusto R. M. A. de Souza
Diego Mesquita
Samuel Kaski
Luigi Acerbi
42
11
0
22 Feb 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
58
69
0
28 Jan 2022
Scaling Bayesian Optimization With Game Theory
Scaling Bayesian Optimization With Game Theory
L. Mathesen
G. Pedrielli
R. L. Smith
19
1
0
07 Oct 2021
Multi-Objective Bayesian Optimization over High-Dimensional Search
  Spaces
Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
22
105
0
22 Sep 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
448
0
13 Jul 2021
Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
  Modeling
Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian Modeling
Kai Wang
Bryan Wilder
S. Suen
B. Dilkina
Milind Tambe
121
0
0
07 Jul 2021
A hyperparameter-tuning approach to automated inverse planning
A hyperparameter-tuning approach to automated inverse planning
Kelsey Maass
Aleksandr Aravkin
Minsun Kim
19
3
0
14 May 2021
Bayesian Optimistic Optimisation with Exponentially Decaying Regret
Bayesian Optimistic Optimisation with Exponentially Decaying Regret
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
11
3
0
10 May 2021
Practical and Rigorous Uncertainty Bounds for Gaussian Process
  Regression
Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression
Christian Fiedler
C. Scherer
Sebastian Trimpe
GP
26
65
0
06 May 2021
Continuous black-box optimization with quantum annealing and random
  subspace coding
Continuous black-box optimization with quantum annealing and random subspace coding
Syun Izawa
Koki Kitai
Shu Tanaka
R. Tamura
Koji Tsuda
11
3
0
30 Apr 2021
Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate
  models
Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate models
Jeroen van Hoof
Joaquin Vanschoren
BDL
38
9
0
06 Jan 2021
Good practices for Bayesian Optimization of high dimensional structured
  spaces
Good practices for Bayesian Optimization of high dimensional structured spaces
E. Siivola
Javier I. González
Andrei Paleyes
Aki Vehtari
30
37
0
31 Dec 2020
High-Dimensional Bayesian Optimization via Tree-Structured Additive
  Models
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models
E. Han
Ishank Arora
Jonathan Scarlett
TPM
AI4CE
33
17
0
24 Dec 2020
Online Learning Demands in Max-min Fairness
Online Learning Demands in Max-min Fairness
Kirthevasan Kandasamy
Gur-Eyal Sela
Joseph E. Gonzalez
Michael I. Jordan
Ion Stoica
FaML
11
15
0
15 Dec 2020
Learning Search Space Partition for Black-box Optimization using Monte
  Carlo Tree Search
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
40
126
0
01 Jul 2020
Additive Tree-Structured Covariance Function for Conditional Parameter
  Spaces in Bayesian Optimization
Additive Tree-Structured Covariance Function for Conditional Parameter Spaces in Bayesian Optimization
Xingchen Ma
Matthew B. Blaschko
21
7
0
21 Jun 2020
ENTMOOT: A Framework for Optimization over Ensemble Tree Models
ENTMOOT: A Framework for Optimization over Ensemble Tree Models
Alexander Thebelt
Jan Kronqvist
Miten Mistry
Robert M. Lee
Nathan Sudermann-Merx
Ruth Misener
29
54
0
10 Mar 2020
Corruption-Tolerant Gaussian Process Bandit Optimization
Corruption-Tolerant Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
Jonathan Scarlett
30
51
0
04 Mar 2020
Distributionally Robust Bayesian Optimization
Distributionally Robust Bayesian Optimization
Johannes Kirschner
Ilija Bogunovic
Stefanie Jegelka
Andreas Krause
30
77
0
20 Feb 2020
Bayesian Optimization for Policy Search in High-Dimensional Systems via
  Automatic Domain Selection
Bayesian Optimization for Policy Search in High-Dimensional Systems via Automatic Domain Selection
Lukas P. Frohlich
Edgar D. Klenske
Christian Daniel
Melanie Zeilinger
18
12
0
21 Jan 2020
Randomly Projected Additive Gaussian Processes for Regression
Randomly Projected Additive Gaussian Processes for Regression
Ian A. Delbridge
D. Bindel
A. Wilson
27
27
0
30 Dec 2019
Trading Convergence Rate with Computational Budget in High Dimensional
  Bayesian Optimization
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
22
14
0
27 Nov 2019
Autonomous discovery of battery electrolytes with robotic
  experimentation and machine-learning
Autonomous discovery of battery electrolytes with robotic experimentation and machine-learning
Adarsh Dave
Jared M. Mitchell
Kirthevasan Kandasamy
S. Burke
Biswajit Paria
Barnabás Póczós
J. Whitacre
V. Viswanathan
41
119
0
22 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
48
450
0
03 Oct 2019
High Dimensional Bayesian Optimization via Supervised Dimension
  Reduction
High Dimensional Bayesian Optimization via Supervised Dimension Reduction
Miao Zhang
Huiqi Li
Steven W. Su
19
44
0
21 Jul 2019
Bayesian Optimization on Large Graphs via a Graph Convolutional
  Generative Model: Application in Cardiac Model Personalization
Bayesian Optimization on Large Graphs via a Graph Convolutional Generative Model: Application in Cardiac Model Personalization
Jwala Dhamala
S. Ghimire
J. Sapp
B. Horácek
Linwei Wang
MedIm
39
12
0
01 Jul 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust
  Bayesian Optimisation with Dragonfly
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
Willie Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric Xing
29
174
0
15 Mar 2019
12
Next