ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.07943
  4. Cited By
Non-stochastic Best Arm Identification and Hyperparameter Optimization

Non-stochastic Best Arm Identification and Hyperparameter Optimization

27 February 2015
Kevin G. Jamieson
Ameet Talwalkar
ArXivPDFHTML

Papers citing "Non-stochastic Best Arm Identification and Hyperparameter Optimization"

50 / 241 papers shown
Title
Efficient Automatic CASH via Rising Bandits
Efficient Automatic CASH via Rising Bandits
Yang Li
Jiawei Jiang
Jinyang Gao
Yingxia Shao
Ce Zhang
Bin Cui
21
34
0
08 Dec 2020
Online Model Selection: a Rested Bandit Formulation
Online Model Selection: a Rested Bandit Formulation
Leonardo Cella
Claudio Gentile
Massimiliano Pontil
9
0
0
07 Dec 2020
MFES-HB: Efficient Hyperband with Multi-Fidelity Quality Measurements
MFES-HB: Efficient Hyperband with Multi-Fidelity Quality Measurements
Yang Li
Yu Shen
Jiawei Jiang
Jinyang Gao
Ce Zhang
Bin Cui
16
27
0
05 Dec 2020
Greedy k-Center from Noisy Distance Samples
Greedy k-Center from Noisy Distance Samples
Neharika Jali
Nikhil Karamchandani
Sharayu Moharir
9
2
0
03 Nov 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using
  Structured Response Jacobians
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
27
24
0
26 Oct 2020
Automatic Feasibility Study via Data Quality Analysis for ML: A
  Case-Study on Label Noise
Automatic Feasibility Study via Data Quality Analysis for ML: A Case-Study on Label Noise
Cédric Renggli
Luka Rimanic
Luka Kolar
Wentao Wu
Ce Zhang
38
3
0
16 Oct 2020
Stochastic analysis of heterogeneous porous material with modified
  neural architecture search (NAS) based physics-informed neural networks using
  transfer learning
Stochastic analysis of heterogeneous porous material with modified neural architecture search (NAS) based physics-informed neural networks using transfer learning
Hongwei Guo
X. Zhuang
Timon Rabczuk
20
82
0
03 Oct 2020
Binarized Neural Architecture Search for Efficient Object Recognition
Binarized Neural Architecture Search for Efficient Object Recognition
Hanlin Chen
Lian Zhuo
Baochang Zhang
Xiawu Zheng
Jianzhuang Liu
Rongrong Ji
David Doermann
G. Guo
MQ
10
18
0
08 Sep 2020
Automated Machine Learning -- a brief review at the end of the early
  years
Automated Machine Learning -- a brief review at the end of the early years
Hugo Jair Escalante
13
26
0
19 Aug 2020
Quantity vs. Quality: On Hyperparameter Optimization for Deep
  Reinforcement Learning
Quantity vs. Quality: On Hyperparameter Optimization for Deep Reinforcement Learning
L. Hertel
Pierre Baldi
D. Gillen
BDL
20
12
0
29 Jul 2020
Practical and sample efficient zero-shot HPO
Practical and sample efficient zero-shot HPO
Fela Winkelmolen
Nikita Ivkin
H. Bozkurt
Zohar Karnin
VLM
6
13
0
27 Jul 2020
AABO: Adaptive Anchor Box Optimization for Object Detection via Bayesian
  Sub-sampling
AABO: Adaptive Anchor Box Optimization for Object Detection via Bayesian Sub-sampling
Wenshuo Ma
Tingzhong Tian
Hang Xu
Yimin Huang
Zhenguo Li
12
16
0
18 Jul 2020
An Asymptotically Optimal Multi-Armed Bandit Algorithm and
  Hyperparameter Optimization
An Asymptotically Optimal Multi-Armed Bandit Algorithm and Hyperparameter Optimization
Yimin Huang
Yujun Li
Hanrong Ye
Zhenguo Li
Zhihua Zhang
27
7
0
11 Jul 2020
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
35
266
0
08 Jul 2020
Hyperparameter Optimization in Neural Networks via Structured Sparse
  Recovery
Hyperparameter Optimization in Neural Networks via Structured Sparse Recovery
Minsu Cho
Mohammadreza Soltani
C. Hegde
14
1
0
07 Jul 2020
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
  Robust AutoDL
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL
Lucas Zimmer
Marius Lindauer
Frank Hutter
MU
14
88
0
24 Jun 2020
Hippo: Taming Hyper-parameter Optimization of Deep Learning with Stage
  Trees
Hippo: Taming Hyper-parameter Optimization of Deep Learning with Stage Trees
Ahnjae Shin
Do Yoon Kim
Joo Seong Jeong
Byung-Gon Chun
17
4
0
22 Jun 2020
SnapBoost: A Heterogeneous Boosting Machine
SnapBoost: A Heterogeneous Boosting Machine
Thomas Parnell
Andreea Anghel
M. Lazuka
Nikolas Ioannou
Sebastian Kurella
Peshal Agarwal
N. Papandreou
Haralambos Pozidis
25
0
0
17 Jun 2020
Solving Constrained CASH Problems with ADMM
Solving Constrained CASH Problems with ADMM
Parikshit Ram
Sijia Liu
Deepak Vijaykeerthi
Dakuo Wang
Djallel Bouneffouf
Gregory Bramble
Horst Samulowitz
Alexander G. Gray
33
3
0
17 Jun 2020
A Multi-Phase Approach for Product Hierarchy Forecasting in Supply Chain
  Management: Application to MonarchFx Inc
A Multi-Phase Approach for Product Hierarchy Forecasting in Supply Chain Management: Application to MonarchFx Inc
Sajjad Taghiyeh
D. Lengacher
Amir Hossein Sadeghi
Amirreza Sahebifakhrabad
R. Handfield
AI4TS
28
15
0
16 Jun 2020
BanditPAM: Almost Linear Time $k$-Medoids Clustering via Multi-Armed
  Bandits
BanditPAM: Almost Linear Time kkk-Medoids Clustering via Multi-Armed Bandits
Mo Tiwari
Martin Jinye Zhang
James Mayclin
Sebastian Thrun
Chris Piech
Ilan Shomorony
27
11
0
11 Jun 2020
Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a
  Differentially Private Scheme
Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a Differentially Private Scheme
Konstantinos E. Nikolakakis
Dionysios S. Kalogerias
Or Sheffet
Anand D. Sarwate
8
11
0
11 Jun 2020
Learning to Rank Learning Curves
Learning to Rank Learning Curves
Martin Wistuba
Tejaswini Pedapati
6
24
0
05 Jun 2020
HyperSTAR: Task-Aware Hyperparameters for Deep Networks
HyperSTAR: Task-Aware Hyperparameters for Deep Networks
Gaurav Mittal
Chang Liu
Nikolaos Karianakis
Victor Fragoso
Mei Chen
Y. Fu
VLM
46
23
0
21 May 2020
Model-based Asynchronous Hyperparameter and Neural Architecture Search
Model-based Asynchronous Hyperparameter and Neural Architecture Search
Aaron Klein
Louis C. Tiao
Thibaut Lienart
Cédric Archambeau
Matthias Seeger
23
5
0
24 Mar 2020
Hyper-Parameter Optimization: A Review of Algorithms and Applications
Hyper-Parameter Optimization: A Review of Algorithms and Applications
Tong Yu
Hong Zhu
AAML
21
521
0
12 Mar 2020
Meta-learning curiosity algorithms
Meta-learning curiosity algorithms
Ferran Alet
Martin Schneider
Tomas Lozano-Perez
L. Kaelbling
25
63
0
11 Mar 2020
Neuron Shapley: Discovering the Responsible Neurons
Neuron Shapley: Discovering the Responsible Neurons
Amirata Ghorbani
James Zou
FAtt
TDI
25
108
0
23 Feb 2020
Fine-Tuning Pretrained Language Models: Weight Initializations, Data
  Orders, and Early Stopping
Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping
Jesse Dodge
Gabriel Ilharco
Roy Schwartz
Ali Farhadi
Hannaneh Hajishirzi
Noah A. Smith
41
584
0
15 Feb 2020
NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural
  Architecture Search
NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural Architecture Search
Arber Zela
Julien N. Siems
Frank Hutter
88
147
0
28 Jan 2020
Optimized Generic Feature Learning for Few-shot Classification across
  Domains
Optimized Generic Feature Learning for Few-shot Classification across Domains
Tonmoy Saikia
Thomas Brox
Cordelia Schmid
VLM
30
48
0
22 Jan 2020
HyperSched: Dynamic Resource Reallocation for Model Development on a
  Deadline
HyperSched: Dynamic Resource Reallocation for Model Development on a Deadline
Richard Liaw
Romil Bhardwaj
Lisa Dunlap
Yitian Zou
Joseph E. Gonzalez
Ion Stoica
Alexey Tumanov
18
44
0
08 Jan 2020
Meta-Learning Initializations for Image Segmentation
Meta-Learning Initializations for Image Segmentation
S. Hendryx
Andrew B. Leach
P. Hein
Clayton T. Morrison
VLM
10
25
0
13 Dec 2019
Stage-based Hyper-parameter Optimization for Deep Learning
Stage-based Hyper-parameter Optimization for Deep Learning
Ahnjae Shin
Dongjin Shin
Sungwoo Cho
Do Yoon Kim
Eunji Jeong
Gyeong-In Yu
Byung-Gon Chun
11
4
0
24 Nov 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
27
403
0
06 Nov 2019
A Quest for Structure: Jointly Learning the Graph Structure and
  Semi-Supervised Classification
A Quest for Structure: Jointly Learning the Graph Structure and Semi-Supervised Classification
Xuan Wu
Lingxiao Zhao
Leman Akoglu
9
31
0
26 Sep 2019
Learning to Tune XGBoost with XGBoost
Learning to Tune XGBoost with XGBoost
Johanna Sommer
Dimitrios Sarigiannis
Thomas Parnell
13
7
0
16 Sep 2019
Weighted Sampling for Combined Model Selection and Hyperparameter Tuning
Weighted Sampling for Combined Model Selection and Hyperparameter Tuning
Dimitrios Sarigiannis
Thomas Parnell
Haris Pozidis
142
3
0
16 Sep 2019
BOSH: An Efficient Meta Algorithm for Decision-based Attacks
BOSH: An Efficient Meta Algorithm for Decision-based Attacks
Zhenxin Xiao
Puyudi Yang
Yuchen Eleanor Jiang
Kai-Wei Chang
Cho-Jui Hsieh
AAML
16
1
0
10 Sep 2019
BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis
  of Hyperparameters
BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters
Marius Lindauer
Katharina Eggensperger
Matthias Feurer
André Biedenkapp
Joshua Marben
Philip Muller
Frank Hutter
5
40
0
16 Aug 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
17
5,571
0
25 Jul 2019
Techniques for Automated Machine Learning
Techniques for Automated Machine Learning
Yi-Wei Chen
Qingquan Song
Xia Hu
18
48
0
21 Jul 2019
Automated Machine Learning in Practice: State of the Art and Recent
  Results
Automated Machine Learning in Practice: State of the Art and Recent Results
Lukas Tuggener
Mohammadreza Amirian
Katharina Rombach
Stefan Lörwald
Anastasia Varlet
Christian Westermann
Thilo Stadelmann
21
63
0
19 Jul 2019
Two-stage Optimization for Machine Learning Workflow
Two-stage Optimization for Machine Learning Workflow
Alexandre Quemy
TPM
24
26
0
01 Jul 2019
One-Shot Neural Architecture Search via Compressive Sensing
One-Shot Neural Architecture Search via Compressive Sensing
Minsu Cho
Mohammadreza Soltani
C. Hegde
22
17
0
07 Jun 2019
Automated Machine Learning: State-of-The-Art and Open Challenges
Automated Machine Learning: State-of-The-Art and Open Challenges
Radwa El Shawi
Mohamed Maher
Sherif Sakr
25
158
0
05 Jun 2019
Cascaded Algorithm-Selection and Hyper-Parameter Optimization with
  Extreme-Region Upper Confidence Bound Bandit
Cascaded Algorithm-Selection and Hyper-Parameter Optimization with Extreme-Region Upper Confidence Bound Bandit
Yi-Qi Hu
Yang Yu
Jun-Da Liao
6
9
0
31 May 2019
Meta-Surrogate Benchmarking for Hyperparameter Optimization
Meta-Surrogate Benchmarking for Hyperparameter Optimization
Aaron Klein
Zhenwen Dai
Frank Hutter
Neil D. Lawrence
Javier I. González
OffRL
6
36
0
30 May 2019
The Machine Learning Bazaar: Harnessing the ML Ecosystem for Effective
  System Development
The Machine Learning Bazaar: Harnessing the ML Ecosystem for Effective System Development
Micah J. Smith
Carles Sala Cladellas
James Max Kanter
K. Veeramachaneni
24
49
0
22 May 2019
AutoDispNet: Improving Disparity Estimation With AutoML
AutoDispNet: Improving Disparity Estimation With AutoML
Tonmoy Saikia
Yassine Marrakchi
Arber Zela
Frank Hutter
Thomas Brox
19
78
0
17 May 2019
Previous
12345
Next