ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.07943
  4. Cited By
Non-stochastic Best Arm Identification and Hyperparameter Optimization

Non-stochastic Best Arm Identification and Hyperparameter Optimization

27 February 2015
Kevin G. Jamieson
Ameet Talwalkar
ArXivPDFHTML

Papers citing "Non-stochastic Best Arm Identification and Hyperparameter Optimization"

50 / 241 papers shown
Title
Tensor Programs V: Tuning Large Neural Networks via Zero-Shot
  Hyperparameter Transfer
Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Greg Yang
J. E. Hu
Igor Babuschkin
Szymon Sidor
Xiaodong Liu
David Farhi
Nick Ryder
J. Pachocki
Weizhu Chen
Jianfeng Gao
26
148
0
07 Mar 2022
Practitioner Motives to Use Different Hyperparameter Optimization Methods
Practitioner Motives to Use Different Hyperparameter Optimization Methods
Niclas Kannengießer
Niklas Hasebrook
Felix Morsbach
Marc-André Zöller
Jörg Franke
Marius Lindauer
Frank Hutter
Ali Sunyaev
39
4
0
03 Mar 2022
Adaptive Gradient Methods with Local Guarantees
Adaptive Gradient Methods with Local Guarantees
Zhou Lu
Wenhan Xia
Sanjeev Arora
Elad Hazan
ODL
27
9
0
02 Mar 2022
Supervising the Multi-Fidelity Race of Hyperparameter Configurations
Supervising the Multi-Fidelity Race of Hyperparameter Configurations
Martin Wistuba
Arlind Kadra
Josif Grabocka
36
14
0
20 Feb 2022
Adaptive Experimentation in the Presence of Exogenous Nonstationary
  Variation
Adaptive Experimentation in the Presence of Exogenous Nonstationary Variation
Chao Qin
Daniel Russo
58
6
0
18 Feb 2022
Finding Optimal Arms in Non-stochastic Combinatorial Bandits with
  Semi-bandit Feedback and Finite Budget
Finding Optimal Arms in Non-stochastic Combinatorial Bandits with Semi-bandit Feedback and Finite Budget
Jasmin Brandt
Viktor Bengs
Björn Haddenhorst
Eyke Hüllermeier
21
6
0
09 Feb 2022
Learning Curves for Decision Making in Supervised Machine Learning: A Survey
Learning Curves for Decision Making in Supervised Machine Learning: A Survey
F. Mohr
Jan N. van Rijn
41
54
0
28 Jan 2022
Consolidated learning -- a domain-specific model-free optimization
  strategy with examples for XGBoost and MIMIC-IV
Consolidated learning -- a domain-specific model-free optimization strategy with examples for XGBoost and MIMIC-IV
Katarzyna Wo'znica
Mateusz Grzyb
Zuzanna Trafas
P. Biecek
68
2
0
27 Jan 2022
IMO$^3$: Interactive Multi-Objective Off-Policy Optimization
IMO3^33: Interactive Multi-Objective Off-Policy Optimization
Nan Wang
Hongning Wang
Maryam Karimzadehgan
B. Kveton
Craig Boutilier
OffRL
14
3
0
24 Jan 2022
Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale
Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale
Yang Li
Yu Shen
Huaijun Jiang
Wentao Zhang
Jixiang Li
Ji Liu
Ce Zhang
Bin Cui
30
26
0
18 Jan 2022
Automated Reinforcement Learning: An Overview
Automated Reinforcement Learning: An Overview
Reza Refaei Afshar
Yingqian Zhang
Joaquin Vanschoren
U. Kaymak
OffRL
36
16
0
13 Jan 2022
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Jack Parker-Holder
Raghunandan Rajan
Xingyou Song
André Biedenkapp
Yingjie Miao
...
Vu-Linh Nguyen
Roberto Calandra
Aleksandra Faust
Frank Hutter
Marius Lindauer
AI4CE
33
100
0
11 Jan 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with
  Persistent Evolution Strategies
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
67
0
27 Dec 2021
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
29
26
0
16 Dec 2021
FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning
FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning
Yi Zhou
Parikshit Ram
Theodoros Salonidis
Nathalie Baracaldo
Horst Samulowitz
Heiko Ludwig
AI4CE
37
25
0
15 Dec 2021
Automatic tuning of hyper-parameters of reinforcement learning
  algorithms using Bayesian optimization with behavioral cloning
Automatic tuning of hyper-parameters of reinforcement learning algorithms using Bayesian optimization with behavioral cloning
Juan Cruz Barsce
J. Palombarini
Ernesto C. Martínez
OffRL
33
1
0
15 Dec 2021
Searching Parameterized AP Loss for Object Detection
Searching Parameterized AP Loss for Object Detection
Chenxin Tao
Zizhang Li
Xizhou Zhu
Gao Huang
Yong-Jin Liu
Jifeng Dai
29
5
0
09 Dec 2021
Automated Benchmark-Driven Design and Explanation of Hyperparameter
  Optimizers
Automated Benchmark-Driven Design and Explanation of Hyperparameter Optimizers
Julia Moosbauer
Martin Binder
Lennart Schneider
Florian Pfisterer
Marc Becker
Michel Lang
Lars Kotthoff
Bernd Bischl
13
7
0
29 Nov 2021
Naive Automated Machine Learning
Naive Automated Machine Learning
F. Mohr
Marcel Wever
21
11
0
29 Nov 2021
Fast and Informative Model Selection using Learning Curve
  Cross-Validation
Fast and Informative Model Selection using Learning Curve Cross-Validation
F. Mohr
Jan N. van Rijn
17
30
0
27 Nov 2021
A Simple and Fast Baseline for Tuning Large XGBoost Models
A Simple and Fast Baseline for Tuning Large XGBoost Models
Sanyam Kapoor
Valerio Perrone
29
8
0
12 Nov 2021
Towards Green Automated Machine Learning: Status Quo and Future
  Directions
Towards Green Automated Machine Learning: Status Quo and Future Directions
Tanja Tornede
Alexander Tornede
Jonas Hanselle
Marcel Wever
F. Mohr
Eyke Hüllermeier
67
37
0
10 Nov 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update
  Hyperparameters by Implicit Differentiation
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
Genealogical Population-Based Training for Hyperparameter Optimization
Genealogical Population-Based Training for Hyperparameter Optimization
Antoine Scardigli
P. Fournier
Matteo Vilucchio
D. Naccache
GP
14
0
0
30 Sep 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
46
100
0
14 Sep 2021
Automatic Componentwise Boosting: An Interpretable AutoML System
Automatic Componentwise Boosting: An Interpretable AutoML System
Stefan Coors
Daniel Schalk
B. Bischl
David Rügamer
TPM
38
3
0
12 Sep 2021
Automated Machine Learning, Bounded Rationality, and Rational
  Metareasoning
Automated Machine Learning, Bounded Rationality, and Rational Metareasoning
Eyke Hüllermeier
F. Mohr
Alexander Tornede
Marcel Wever
LRM
35
3
0
10 Sep 2021
YAHPO Gym -- An Efficient Multi-Objective Multi-Fidelity Benchmark for
  Hyperparameter Optimization
YAHPO Gym -- An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization
Florian Pfisterer
Lennart Schneider
Julia Moosbauer
Martin Binder
B. Bischl
33
36
0
08 Sep 2021
SummerTime: Text Summarization Toolkit for Non-experts
SummerTime: Text Summarization Toolkit for Non-experts
Ansong Ni
Zhangir Azerbayev
Mutethia Mutuma
Troy Feng
Yusen Zhang
Tao Yu
Ahmed Hassan Awadallah
Dragomir R. Radev
31
10
0
29 Aug 2021
RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform
  Successive Halving
RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform Successive Halving
Ruochen Wang
Xiangning Chen
Minhao Cheng
Xiaocheng Tang
Cho-Jui Hsieh
41
13
0
18 Aug 2021
HyperJump: Accelerating HyperBand via Risk Modelling
HyperJump: Accelerating HyperBand via Risk Modelling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
22
8
0
05 Aug 2021
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
  Decomposition
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space Decomposition
Yang Li
Yu Shen
Wentao Zhang
Jiawei Jiang
Bolin Ding
...
Jingren Zhou
Zhi-Xin Yang
Wentao Wu
Ce Zhang
Bin Cui
LRM
29
44
0
19 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Multi-objective Asynchronous Successive Halving
Multi-objective Asynchronous Successive Halving
Robin Schmucker
Michele Donini
Muhammad Bilal Zafar
David Salinas
Cédric Archambeau
32
23
0
23 Jun 2021
Efficient Deep Learning: A Survey on Making Deep Learning Models
  Smaller, Faster, and Better
Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better
Gaurav Menghani
VLM
MedIm
23
366
0
16 Jun 2021
Efficient and Generalizable Tuning Strategies for Stochastic Gradient
  MCMC
Efficient and Generalizable Tuning Strategies for Stochastic Gradient MCMC
Jeremie Coullon
Leah F. South
Christopher Nemeth
27
12
0
27 May 2021
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on
  the Fly
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly
Yuchen Jin
Dinesh Manocha
Liangyu Zhao
Yibo Zhu
Chuanxiong Guo
Marco Canini
Arvind Krishnamurthy
37
18
0
22 May 2021
Bag of Baselines for Multi-objective Joint Neural Architecture Search
  and Hyperparameter Optimization
Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization
Julia Guerrero-Viu
Sven Hauns
Sergio Izquierdo
Guilherme Miotto
Simon Schrodi
André Biedenkapp
T. Elsken
Difan Deng
Marius Lindauer
Frank Hutter
AI4CE
17
25
0
03 May 2021
Explainable artificial intelligence for mechanics: physics-informing
  neural networks for constitutive models
Explainable artificial intelligence for mechanics: physics-informing neural networks for constitutive models
A. Koeppe
F. Bamer
M. Selzer
B. Nestler
Bernd Markert
PINN
AI4CE
14
9
0
20 Apr 2021
Which Hyperparameters to Optimise? An Investigation of Evolutionary
  Hyperparameter Optimisation in Graph Neural Network For Molecular Property
  Prediction
Which Hyperparameters to Optimise? An Investigation of Evolutionary Hyperparameter Optimisation in Graph Neural Network For Molecular Property Prediction
Yingfang Yuan
Wenjun Wang
Wei Pang
16
7
0
13 Apr 2021
A resource-efficient method for repeated HPO and NAS problems
A resource-efficient method for repeated HPO and NAS problems
Giovanni Zappella
David Salinas
Cédric Archambeau
14
5
0
30 Mar 2021
On the Importance of Hyperparameter Optimization for Model-based
  Reinforcement Learning
On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning
Bangnig Zhang
Raghunandan Rajan
Luis Pineda
Nathan Lambert
André Biedenkapp
Kurtland Chua
Frank Hutter
Roberto Calandra
26
100
0
26 Feb 2021
A Genetic Algorithm with Tree-structured Mutation for Hyperparameter
  Optimisation of Graph Neural Networks
A Genetic Algorithm with Tree-structured Mutation for Hyperparameter Optimisation of Graph Neural Networks
Yingfang Yuan
Wenjun Wang
Wei Pang
34
9
0
24 Feb 2021
Automated Discovery of Adaptive Attacks on Adversarial Defenses
Automated Discovery of Adaptive Attacks on Adversarial Defenses
Chengyuan Yao
Pavol Bielik
Petar Tsankov
Martin Vechev
AAML
19
24
0
23 Feb 2021
Horizontally Fused Training Array: An Effective Hardware Utilization
  Squeezer for Training Novel Deep Learning Models
Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models
Shang Wang
Peiming Yang
Yuxuan Zheng
Xuelong Li
Gennady Pekhimenko
16
22
0
03 Feb 2021
Cost-Efficient Online Hyperparameter Optimization
Cost-Efficient Online Hyperparameter Optimization
Jingkang Wang
Mengye Ren
Ilija Bogunovic
Yuwen Xiong
R. Urtasun
42
2
0
17 Jan 2021
HyperMorph: Amortized Hyperparameter Learning for Image Registration
HyperMorph: Amortized Hyperparameter Learning for Image Registration
Andrew Hoopes
Malte Hoffmann
Bruce Fischl
John Guttag
Adrian Dalca
39
128
0
04 Jan 2021
AutonoML: Towards an Integrated Framework for Autonomous Machine
  Learning
AutonoML: Towards an Integrated Framework for Autonomous Machine Learning
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
30
16
0
23 Dec 2020
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free
  Optimization
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
45
16
0
15 Dec 2020
Ensemble Squared: A Meta AutoML System
Ensemble Squared: A Meta AutoML System
Jason Yoo
Tony Joseph
Dylan Yung
S. Nasseri
Frank Wood
MoE
27
8
0
10 Dec 2020
Previous
12345
Next