ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.05700
  4. Cited By
Scalable Bayesian Optimization Using Deep Neural Networks

Scalable Bayesian Optimization Using Deep Neural Networks

19 February 2015
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
N. Satish
N. Sundaram
Md. Mostofa Ali Patwary
P. Prabhat
Ryan P. Adams
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Scalable Bayesian Optimization Using Deep Neural Networks"

44 / 194 papers shown
Title
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using
  Structured Best-Response Functions
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
David Duvenaud
Roger C. Grosse
27
164
0
07 Mar 2019
Robust Grasp Planning Over Uncertain Shape Completions
Robust Grasp Planning Over Uncertain Shape Completions
Jens Lundell
Francesco Verdoja
Ville Kyrki
3DPC
17
58
0
02 Mar 2019
NAS-Bench-101: Towards Reproducible Neural Architecture Search
NAS-Bench-101: Towards Reproducible Neural Architecture Search
Chris Ying
Aaron Klein
Esteban Real
Eric Christiansen
Kevin Patrick Murphy
Frank Hutter
12
673
0
25 Feb 2019
Bayesian Adversarial Spheres: Bayesian Inference and Adversarial
  Examples in a Noiseless Setting
Bayesian Adversarial Spheres: Bayesian Inference and Adversarial Examples in a Noiseless Setting
Artur Bekasov
Iain Murray
AAML
BDL
20
14
0
29 Nov 2018
Practical Design Space Exploration
Practical Design Space Exploration
Luigi Nardi
D. Koeplinger
K. Olukotun
19
86
0
11 Oct 2018
Neural Network Encapsulation
Neural Network Encapsulation
Hongyang Li
Xiaoyang Guo
Bo Dai
Wanli Ouyang
Xiaogang Wang
21
51
0
11 Aug 2018
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural
  Networks
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks
Tobias Hinz
Nicolás Navarro-Guerrero
S. Magg
S. Wermter
27
104
0
19 Jul 2018
BOCK : Bayesian Optimization with Cylindrical Kernels
BOCK : Bayesian Optimization with Cylindrical Kernels
Changyong Oh
E. Gavves
Max Welling
23
135
0
05 Jun 2018
Efficient and Scalable Batch Bayesian Optimization Using K-Means
Efficient and Scalable Batch Bayesian Optimization Using K-Means
Matthew J. Groves
Edward O. Pyzer-Knapp
19
15
0
04 Jun 2018
Parallel Architecture and Hyperparameter Search via Successive Halving
  and Classification
Parallel Architecture and Hyperparameter Search via Successive Halving and Classification
Manoj Kumar
George E. Dahl
Vijay Vasudevan
Mohammad Norouzi
28
25
0
25 May 2018
Best arm identification in multi-armed bandits with delayed feedback
Best arm identification in multi-armed bandits with delayed feedback
Aditya Grover
Todor Markov
Patrick Attia
Norman Jin
Nicholas Perkins
...
M. Chen
Zi Yang
Stephen J. Harris
W. Chueh
Stefano Ermon
27
74
0
29 Mar 2018
Ocean Eddy Identification and Tracking using Neural Networks
Ocean Eddy Identification and Tracking using Neural Networks
K. Franz
R. Roscher
Andres Milioto
Susanne Wenzel
J. Kusche
AI4Cl
28
69
0
20 Mar 2018
Evolutionary Architecture Search For Deep Multitask Networks
Evolutionary Architecture Search For Deep Multitask Networks
J. Liang
Elliot Meyerson
Risto Miikkulainen
39
120
0
10 Mar 2018
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep
  Networks for Thompson Sampling
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
C. Riquelme
George Tucker
Jasper Snoek
BDL
41
365
0
26 Feb 2018
Practical Transfer Learning for Bayesian Optimization
Practical Transfer Learning for Bayesian Optimization
Matthias Feurer
Benjamin Letham
Frank Hutter
E. Bakshy
55
34
0
06 Feb 2018
Improved Inception-Residual Convolutional Neural Network for Object
  Recognition
Improved Inception-Residual Convolutional Neural Network for Object Recognition
Md. Zahangir Alom
Mahmudul Hasan
C. Yakopcic
T. Taha
V. Asari
46
116
0
28 Dec 2017
Riemannian approach to batch normalization
Riemannian approach to batch normalization
Minhyung Cho
Jaehyung Lee
29
94
0
27 Sep 2017
Connectivity Learning in Multi-Branch Networks
Connectivity Learning in Multi-Branch Networks
Karim Ahmed
Lorenzo Torresani
24
26
0
27 Sep 2017
Constrained Bayesian Optimization for Automatic Chemical Design
Constrained Bayesian Optimization for Automatic Chemical Design
Ryan-Rhys Griffiths
José Miguel Hernández-Lobato
BDL
39
76
0
16 Sep 2017
Bayesian Semisupervised Learning with Deep Generative Models
Bayesian Semisupervised Learning with Deep Generative Models
Jonathan Gordon
José Miguel Hernández-Lobato
BDL
UQCV
GAN
32
27
0
29 Jun 2017
Parallel and Distributed Thompson Sampling for Large-scale Accelerated
  Exploration of Chemical Space
Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space
José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer-Knapp
Alán Aspuru-Guzik
33
178
0
06 Jun 2017
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Zi Wang
Clement Gehring
Pushmeet Kohli
Stefanie Jegelka
UQCV
14
209
0
05 Jun 2017
Accelerating Neural Architecture Search using Performance Prediction
Accelerating Neural Architecture Search using Performance Prediction
Bowen Baker
O. Gupta
Ramesh Raskar
Nikhil Naik
15
30
0
30 May 2017
A Genetic Programming Approach to Designing Convolutional Neural Network
  Architectures
A Genetic Programming Approach to Designing Convolutional Neural Network Architectures
Masanori Suganuma
Shinichi Shirakawa
T. Nagao
27
587
0
03 Apr 2017
High-Resolution Breast Cancer Screening with Multi-View Deep
  Convolutional Neural Networks
High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks
Krzysztof J. Geras
Stacey Wolfson
Yiqiu Shen
Nan Wu
S. G. Kim
Eric Kim
Laura Heacock
Ujas N Parikh
Linda Moy
Kyunghyun Cho
34
222
0
21 Mar 2017
Evolving Deep Neural Networks
Evolving Deep Neural Networks
Risto Miikkulainen
J. Liang
Elliot Meyerson
Aditya Rawal
Daniel Fink
...
B. Raju
H. Shahrzad
Arshak Navruzyan
Nigel P. Duffy
B. Hodjat
42
884
0
01 Mar 2017
Online Meta-learning by Parallel Algorithm Competition
Online Meta-learning by Parallel Algorithm Competition
Stefan Elfwing
E. Uchibe
Kenji Doya
31
22
0
24 Feb 2017
Lets keep it simple, Using simple architectures to outperform deeper and
  more complex architectures
Lets keep it simple, Using simple architectures to outperform deeper and more complex architectures
S. H. HasanPour
Mohammad Rouhani
Mohsen Fayyaz
Mohammad Sabokrou
23
119
0
22 Aug 2016
Efficient Hyperparameter Optimization of Deep Learning Algorithms Using
  Deterministic RBF Surrogates
Efficient Hyperparameter Optimization of Deep Learning Algorithms Using Deterministic RBF Surrogates
Ilija Ilievski
Taimoor Akhtar
Jiashi Feng
C. Shoemaker
32
150
0
28 Jul 2016
Convolutional Residual Memory Networks
Convolutional Residual Memory Networks
Joel Ruben Antony Moniz
C. Pal
31
23
0
16 Jun 2016
Deep Q-Networks for Accelerating the Training of Deep Neural Networks
Jie Fu
AI4CE
46
11
0
05 Jun 2016
FractalNet: Ultra-Deep Neural Networks without Residuals
FractalNet: Ultra-Deep Neural Networks without Residuals
Gustav Larsson
Michael Maire
Gregory Shakhnarovich
45
933
0
24 May 2016
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large
  Datasets
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Aaron Klein
Stefan Falkner
Simon Bartels
Philipp Hennig
Frank Hutter
AI4CE
35
546
0
23 May 2016
Bayesian Hyperparameter Optimization for Ensemble Learning
Bayesian Hyperparameter Optimization for Ensemble Learning
Julien-Charles Levesque
Christian Gagné
R. Sabourin
BDL
24
49
0
20 May 2016
Deep Residual Networks with Exponential Linear Unit
Deep Residual Networks with Exponential Linear Unit
Anish Shah
Eashan Kadam
Hena Shah
Sameer Shinde
Sandip Shingade
50
120
0
14 Apr 2016
Multi-Bias Non-linear Activation in Deep Neural Networks
Multi-Bias Non-linear Activation in Deep Neural Networks
Hongyang Li
Wanli Ouyang
Xiaogang Wang
15
64
0
03 Apr 2016
Deep Networks with Stochastic Depth
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
74
2,338
0
30 Mar 2016
Do Deep Convolutional Nets Really Need to be Deep and Convolutional?
Do Deep Convolutional Nets Really Need to be Deep and Convolutional?
G. Urban
Krzysztof J. Geras
Samira Ebrahimi Kahou
Ozlem Aslan
Shengjie Wang
R. Caruana
Abdel-rahman Mohamed
Matthai Philipose
Matthew Richardson
20
47
0
17 Mar 2016
Understanding and Improving Convolutional Neural Networks via
  Concatenated Rectified Linear Units
Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units
Wenling Shang
Kihyuk Sohn
Diogo Almeida
Honglak Lee
24
499
0
16 Mar 2016
Parallel Predictive Entropy Search for Batch Global Optimization of
  Expensive Objective Functions
Parallel Predictive Entropy Search for Batch Global Optimization of Expensive Objective Functions
Amar Shah
Zoubin Ghahramani
35
159
0
23 Nov 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
61
872
0
06 Nov 2015
Mondrian Forests for Large-Scale Regression when Uncertainty Matters
Mondrian Forests for Large-Scale Regression when Uncertainty Matters
Balaji Lakshminarayanan
Daniel M. Roy
Yee Whye Teh
UQCV
32
56
0
11 Jun 2015
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
92
271
0
24 Feb 2014
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,639
0
03 Jul 2012
Previous
1234