Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.05700
Cited By
Scalable Bayesian Optimization Using Deep Neural Networks
19 February 2015
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
N. Satish
N. Sundaram
Md. Mostofa Ali Patwary
P. Prabhat
Ryan P. Adams
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Bayesian Optimization Using Deep Neural Networks"
50 / 194 papers shown
Title
A General Recipe for Likelihood-free Bayesian Optimization
Jiaming Song
Lantao Yu
Willie Neiswanger
Stefano Ermon
38
23
0
27 Jun 2022
Joint Entropy Search for Maximally-Informed Bayesian Optimization
Carl Hvarfner
Frank Hutter
Luigi Nardi
44
36
0
09 Jun 2022
Dap-FL: Federated Learning flourishes by adaptive tuning and secure aggregation
Qian Chen
Zilong Wang
Jiawei Chen
Haonan Yan
Xiaodong Lin
FedML
10
17
0
08 Jun 2022
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
40
200
0
07 Jun 2022
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
Yang Li
Yu Shen
Huaijun Jiang
Wentao Zhang
Zhi-Xin Yang
Ce Zhang
Bin Cui
38
15
0
06 Jun 2022
Transfer Learning based Search Space Design for Hyperparameter Tuning
Yang Li
Yu Shen
Huaijun Jiang
Tianyi Bai
Wentao Zhang
Ce Zhang
Bin Cui
38
13
0
06 Jun 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
35
2
0
27 May 2022
Interpolating Compressed Parameter Subspaces
Siddhartha Datta
N. Shadbolt
37
5
0
19 May 2022
ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution
Lixue Cheng
Ziyi Yang
Chang-Yu Hsieh
Ben Liao
Shengyu Zhang
30
6
0
19 May 2022
A model aggregation approach for high-dimensional large-scale optimization
Haowei Wang
Ercong Zhang
Szu Hui Ng
Giulia Pedrielli
22
1
0
16 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
26
48
0
01 May 2022
PACE: A Parallelizable Computation Encoder for Directed Acyclic Graphs
Zehao Dong
Muhan Zhang
Fuhai Li
Yixin Chen
CML
GNN
33
17
0
19 Mar 2022
Learning Where To Look -- Generative NAS is Surprisingly Efficient
Jovita Lukasik
Steffen Jung
M. Keuper
29
15
0
16 Mar 2022
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Mitchell Wortsman
Gabriel Ilharco
S. Gadre
Rebecca Roelofs
Raphael Gontijo-Lopes
...
Hongseok Namkoong
Ali Farhadi
Y. Carmon
Simon Kornblith
Ludwig Schmidt
MoMe
56
924
1
10 Mar 2022
Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Greg Yang
J. E. Hu
Igor Babuschkin
Szymon Sidor
Xiaodong Liu
David Farhi
Nick Ryder
J. Pachocki
Weizhu Chen
Jianfeng Gao
28
149
0
07 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
37
40
0
06 Mar 2022
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
29
14
0
28 Feb 2022
Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization
Brandon Trabucco
Xinyang Geng
Aviral Kumar
Sergey Levine
OffRL
34
95
0
17 Feb 2022
Maximum Likelihood Uncertainty Estimation: Robustness to Outliers
Deebul Nair
Nico Hochgeschwender
Miguel A. Olivares-Mendez
OOD
32
7
0
03 Feb 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging
M. Laves
Malte Tolle
Alexander Schlaefer
Sandy Engelhardt
37
10
0
02 Feb 2022
Automotive Parts Assessment: Applying Real-time Instance-Segmentation Models to Identify Vehicle Parts
S. Yusuf
Abdulmalik Aldawsari
R. Souissi
14
3
0
02 Feb 2022
Optimal Regret Is Achievable with Bounded Approximate Inference Error: An Enhanced Bayesian Upper Confidence Bound Framework
Ziyi Huang
Henry Lam
A. Meisami
Haofeng Zhang
36
4
0
31 Jan 2022
Top-K Ranking Deep Contextual Bandits for Information Selection Systems
Jade Freeman
Michael Rawson
35
2
0
28 Jan 2022
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Raul Astudillo
P. Frazier
30
35
0
02 Jan 2022
Online Calibrated and Conformal Prediction Improves Bayesian Optimization
Shachi Deshpande
Charles Marx
Volodymyr Kuleshov
13
7
0
08 Dec 2021
Differentiable Projection for Constrained Deep Learning
Dou Huang
Haoran Zhang
Xuan Song
Ryosuke Shibasaki
35
2
0
21 Nov 2021
Merging Models with Fisher-Weighted Averaging
Michael Matena
Colin Raffel
FedML
MoMe
50
354
0
18 Nov 2021
Uncertainty Quantification in Neural Differential Equations
Olga Graf
P. Flores
P. Protopapas
K. Pichara
UQCV
AI4CE
37
7
0
08 Nov 2021
Multi-Objective Constrained Optimization for Energy Applications via Tree Ensembles
Alexander Thebelt
Calvin Tsay
Robert M. Lee
Nathan Sudermann-Merx
David Walz
T. Tranter
Ruth Misener
AI4CE
9
30
0
04 Nov 2021
RoMA: Robust Model Adaptation for Offline Model-based Optimization
Sihyun Yu
Sungsoo Ahn
Le Song
Jinwoo Shin
OffRL
32
31
0
27 Oct 2021
Data-Driven Offline Optimization For Architecting Hardware Accelerators
Aviral Kumar
Amir Yazdanbakhsh
Milad Hashemi
Kevin Swersky
Sergey Levine
29
36
0
20 Oct 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
31
9
0
20 Oct 2021
Improving Hyperparameter Optimization by Planning Ahead
H. Jomaa
Jonas K. Falkner
Lars Schmidt-Thieme
22
0
0
15 Oct 2021
Marginally calibrated response distributions for end-to-end learning in autonomous driving
Clara Hoffmann
Nadja Klein
13
2
0
03 Oct 2021
SetMargin Loss applied to Deep Keystroke Biometrics with Circle Packing Interpretation
Aythami Morales
Julian Fierrez
A. Acien
Ruben Tolosana
Ignacio Serna
26
20
0
02 Sep 2021
Sparse Bayesian Deep Learning for Dynamic System Identification
Hongpeng Zhou
Chahine Ibrahim
W. Zheng
Wei Pan
BDL
23
25
0
27 Jul 2021
Conservative Objective Models for Effective Offline Model-Based Optimization
Brandon Trabucco
Aviral Kumar
Xinyang Geng
Sergey Levine
OffRL
44
86
0
14 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
60
290
0
28 Jun 2021
HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on OpenML
Sebastian Pineda Arango
H. Jomaa
Martin Wistuba
Josif Grabocka
24
55
0
11 Jun 2021
JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data
Kourosh Hakhamaneshi
Pieter Abbeel
Vladimir M. Stojanović
Aditya Grover
27
10
0
02 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
35
124
0
14 May 2021
Discovering Diverse Athletic Jumping Strategies
Zhiqi Yin
Zeshi Yang
M. van de Panne
KangKang Yin
42
46
0
02 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
148
17
0
23 Apr 2021
Fast Design Space Exploration of Nonlinear Systems: Part I
S. Narain
Emily Mak
Dana Chee
Brendan Englot
K. Pochiraju
N. Jha
Karthik Narayan
25
5
0
05 Apr 2021
How Powerful are Performance Predictors in Neural Architecture Search?
Colin White
Arber Zela
Binxin Ru
Yang Liu
Frank Hutter
22
126
0
02 Apr 2021
Bayesian Deep Basis Fitting for Depth Completion with Uncertainty
Chao Qu
Wenxin Liu
Camillo J Taylor
UQCV
BDL
22
31
0
29 Mar 2021
CATE: Computation-aware Neural Architecture Encoding with Transformers
Shen Yan
Kaiqiang Song
Z. Feng
Mi Zhang
22
24
0
14 Feb 2021
Explaining Inference Queries with Bayesian Optimization
Brandon Lockhart
Jinglin Peng
Weiyuan Wu
Jiannan Wang
Eugene Wu
21
7
0
10 Feb 2021
Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate models
Jeroen van Hoof
Joaquin Vanschoren
BDL
38
9
0
06 Jan 2021
Previous
1
2
3
4
Next