Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.04269
Cited By
Supersparse Linear Integer Models for Optimized Medical Scoring Systems
15 February 2015
Berk Ustun
Cynthia Rudin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Supersparse Linear Integer Models for Optimized Medical Scoring Systems"
50 / 122 papers shown
Title
AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data
F. Xie
Yilin Ning
Han Yuan
B. Goldstein
M. Ong
Nan Liu
B. Chakraborty
15
16
0
13 Jun 2021
A Holistic Approach to Interpretability in Financial Lending: Models, Visualizations, and Summary-Explanations
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
19
41
0
04 Jun 2021
Model Learning with Personalized Interpretability Estimation (ML-PIE)
M. Virgolin
A. D. Lorenzo
Francesca Randone
Eric Medvet
M. Wahde
24
30
0
13 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
CACTUS: Detecting and Resolving Conflicts in Objective Functions
Subhajit Das
Alex Endert
27
0
0
13 Mar 2021
Learning Interpretable Concept-Based Models with Human Feedback
Isaac Lage
Finale Doshi-Velez
22
24
0
04 Dec 2020
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
28
119
0
03 Dec 2020
A Survey on the Explainability of Supervised Machine Learning
Nadia Burkart
Marco F. Huber
FaML
XAI
25
752
0
16 Nov 2020
Qualitative Investigation in Explainable Artificial Intelligence: A Bit More Insight from Social Science
Adam J. Johs
Denise E. Agosto
Rosina O. Weber
20
6
0
13 Nov 2020
Model-Agnostic Explanations using Minimal Forcing Subsets
Xing Han
Joydeep Ghosh
AAML
6
4
0
01 Nov 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
22
397
0
19 Oct 2020
Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!
Jack Hessel
Lillian Lee
29
72
0
13 Oct 2020
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
33
51
0
03 Sep 2020
Tackling COVID-19 through Responsible AI Innovation: Five Steps in the Right Direction
David Leslie
27
67
0
15 Aug 2020
Model Distillation for Revenue Optimization: Interpretable Personalized Pricing
Max Biggs
Wei-Ju Sun
M. Ettl
14
35
0
03 Jul 2020
From Predictions to Decisions: Using Lookahead Regularization
Nir Rosenfeld
Sophie Hilgard
S. Ravindranath
David C. Parkes
22
20
0
20 Jun 2020
The Backbone Method for Ultra-High Dimensional Sparse Machine Learning
Dimitris Bertsimas
V. Digalakis
35
10
0
11 Jun 2020
Continuous Action Reinforcement Learning from a Mixture of Interpretable Experts
R. Akrour
Davide Tateo
Jan Peters
28
21
0
10 Jun 2020
Explanations of Black-Box Model Predictions by Contextual Importance and Utility
S. Anjomshoae
Kary Främling
A. Najjar
20
31
0
30 May 2020
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaML
HAI
64
84
0
08 May 2020
Optimal Local Explainer Aggregation for Interpretable Prediction
Qiaomei Li
Rachel Cummings
Yonatan Dov Mintz
11
0
0
20 Mar 2020
Sparsity in Optimal Randomized Classification Trees
R. Blanquero
E. Carrizosa
Cristina Molero-Río
Dolores Romero Morales
33
45
0
21 Feb 2020
Interactivity and Transparency in Medical Risk Assessment with Supersparse Linear Integer Models
H. Profitlich
Daniel Sonntag
9
3
0
26 Nov 2019
Predictive Multiplicity in Classification
Charles Marx
Flavio du Pin Calmon
Berk Ustun
36
136
0
14 Sep 2019
Learning Fair Rule Lists
Ulrich Aïvodji
Julien Ferry
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
18
10
0
09 Sep 2019
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
Dylan Slack
Sorelle A. Friedler
Emile Givental
FaML
32
54
0
24 Aug 2019
On the Existence of Simpler Machine Learning Models
Lesia Semenova
Cynthia Rudin
Ronald E. Parr
26
85
0
05 Aug 2019
A study on the Interpretability of Neural Retrieval Models using DeepSHAP
Zeon Trevor Fernando
Jaspreet Singh
Avishek Anand
FAtt
AAML
21
68
0
15 Jul 2019
Optimal Explanations of Linear Models
Dimitris Bertsimas
A. Delarue
Patrick Jaillet
Sébastien Martin
FAtt
20
2
0
08 Jul 2019
The Price of Interpretability
Dimitris Bertsimas
A. Delarue
Patrick Jaillet
Sébastien Martin
23
33
0
08 Jul 2019
Quickly Finding the Best Linear Model in High Dimensions
Yahya Sattar
Samet Oymak
24
8
0
03 Jul 2019
Understanding artificial intelligence ethics and safety
David Leslie
FaML
AI4TS
30
345
0
11 Jun 2019
Proposed Guidelines for the Responsible Use of Explainable Machine Learning
Patrick Hall
Navdeep Gill
N. Schmidt
SILM
XAI
FaML
11
28
0
08 Jun 2019
What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use
S. Tonekaboni
Shalmali Joshi
M. Mccradden
Anna Goldenberg
30
383
0
13 May 2019
Hybrid Predictive Model: When an Interpretable Model Collaborates with a Black-box Model
Tong Wang
Qihang Lin
38
19
0
10 May 2019
Interpretability with Accurate Small Models
Abhishek Ghose
Balaraman Ravindran
20
1
0
04 May 2019
Quantifying Model Complexity via Functional Decomposition for Better Post-Hoc Interpretability
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
FAtt
11
59
0
08 Apr 2019
VINE: Visualizing Statistical Interactions in Black Box Models
M. Britton
FAtt
25
21
0
01 Apr 2019
Assessing the Local Interpretability of Machine Learning Models
Dylan Slack
Sorelle A. Friedler
C. Scheidegger
Chitradeep Dutta Roy
FAtt
10
71
0
09 Feb 2019
An Evaluation of the Human-Interpretability of Explanation
Isaac Lage
Emily Chen
Jeffrey He
Menaka Narayanan
Been Kim
Sam Gershman
Finale Doshi-Velez
FAtt
XAI
18
151
0
31 Jan 2019
Rank-one Convexification for Sparse Regression
Alper Atamtürk
A. Gómez
11
50
0
29 Jan 2019
Learning Interpretable Models with Causal Guarantees
Carolyn Kim
Osbert Bastani
FaML
OOD
CML
22
17
0
24 Jan 2019
Improving the Interpretability of Deep Neural Networks with Knowledge Distillation
Xuan Liu
Xiaoguang Wang
Stan Matwin
HAI
14
97
0
28 Dec 2018
Interpretable Optimal Stopping
D. Ciocan
V. Mišić
24
42
0
18 Dec 2018
An Interpretable Model with Globally Consistent Explanations for Credit Risk
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
FAtt
15
93
0
30 Nov 2018
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead
Cynthia Rudin
ELM
FaML
22
218
0
26 Nov 2018
How to improve the interpretability of kernel learning
Jinwei Zhao
Qizhou Wang
Yufei Wang
Yu Liu
Zhenghao Shi
Xinhong Hei
FAtt
19
0
0
21 Nov 2018
How to Use Heuristics for Differential Privacy
Seth Neel
Aaron Roth
Zhiwei Steven Wu
11
26
0
19 Nov 2018
Deep Weighted Averaging Classifiers
Dallas Card
Michael J.Q. Zhang
Hao Tang
14
41
0
06 Nov 2018
On the Art and Science of Machine Learning Explanations
Patrick Hall
FAtt
XAI
28
30
0
05 Oct 2018
Previous
1
2
3
Next