Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.04269
Cited By
Supersparse Linear Integer Models for Optimized Medical Scoring Systems
15 February 2015
Berk Ustun
Cynthia Rudin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Supersparse Linear Integer Models for Optimized Medical Scoring Systems"
50 / 51 papers shown
Title
PointExplainer: Towards Transparent Parkinson's Disease Diagnosis
Xuechao Wang
S. Nõmm
Junqing Huang
Kadri Medijainen
A. Toomela
Michael Ruzhansky
AAML
FAtt
26
0
0
04 May 2025
Model Lakes
Koyena Pal
David Bau
Renée J. Miller
67
0
0
24 Feb 2025
Probabilistic Scoring Lists for Interpretable Machine Learning
Jonas Hanselle
Stefan Heid
Zhigang Zeng
Eyke Hüllermeier
33
0
0
31 Jul 2024
Learning Interpretable Differentiable Logic Networks
Chang Yue
N. Jha
NAI
AI4CE
29
0
0
04 Jul 2024
Distilled Datamodel with Reverse Gradient Matching
Jingwen Ye
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
41
3
0
22 Apr 2024
Explainable Depression Symptom Detection in Social Media
Eliseo Bao Souto
Anxo Perez
Javier Parapar
30
5
0
20 Oct 2023
Community-Based Hierarchical Positive-Unlabeled (PU) Model Fusion for Chronic Disease Prediction
Yang Wu
Xurui Li
Xuhong Zhang
Yangyang Kang
Changlong Sun
Xiaozhong Liu
32
3
0
06 Sep 2023
Learning Optimal Fair Scoring Systems for Multi-Class Classification
Julien Rouzot
Julien Ferry
Marie-José Huguet
FaML
19
8
0
11 Apr 2023
FedScore: A privacy-preserving framework for federated scoring system development
Siqi Li
Yilin Ning
M. Ong
Bibhas Chakraborty
Chuan Hong
...
Han Yuan
Mingxuan Liu
Daniel M. Buckland
Yongju Chen
Nan Liu
FedML
29
7
0
01 Mar 2023
Who Should Predict? Exact Algorithms For Learning to Defer to Humans
Hussein Mozannar
Hunter Lang
Dennis L. Wei
P. Sattigeri
Subhro Das
David Sontag
30
41
0
15 Jan 2023
FasterRisk: Fast and Accurate Interpretable Risk Scores
Jiachang Liu
Chudi Zhong
Boxuan Li
Margo Seltzer
Cynthia Rudin
44
16
0
12 Oct 2022
Leveraging Explanations in Interactive Machine Learning: An Overview
Stefano Teso
Öznur Alkan
Wolfgang Stammer
Elizabeth M. Daly
XAI
FAtt
LRM
26
62
0
29 Jul 2022
When Personalization Harms: Reconsidering the Use of Group Attributes in Prediction
Vinith Suriyakumar
Marzyeh Ghassemi
Berk Ustun
35
6
0
04 Jun 2022
Feature subset selection for kernel SVM classification via mixed-integer optimization
Ryuta Tamura
Yuichi Takano
Ryuhei Miyashiro
26
2
0
28 May 2022
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
38
78
0
06 May 2022
Sparse Bayesian Optimization
Sulin Liu
Qing Feng
David Eriksson
Benjamin Letham
E. Bakshy
30
7
0
03 Mar 2022
Interpretable Low-Resource Legal Decision Making
R. Bhambhoria
Hui Liu
Samuel Dahan
Xiao-Dan Zhu
ELM
AILaw
29
9
0
01 Jan 2022
Learning Optimal Predictive Checklists
Haoran Zhang
Q. Morris
Berk Ustun
Marzyeh Ghassemi
26
11
0
02 Dec 2021
Optimal randomized classification trees
R. Blanquero
E. Carrizosa
Antonios Tsourdos
Dolores Romero Morales
11
47
0
19 Oct 2021
Shapley variable importance clouds for interpretable machine learning
Yilin Ning
M. Ong
Bibhas Chakraborty
B. Goldstein
Daniel Ting
Roger Vaughan
Nan Liu
FAtt
27
69
0
06 Oct 2021
Deep learning for temporal data representation in electronic health records: A systematic review of challenges and methodologies
F. Xie
Han Yuan
Yilin Ning
M. Ong
Mengling Feng
W. Hsu
B. Chakraborty
Nan Liu
27
83
0
21 Jul 2021
A Holistic Approach to Interpretability in Financial Lending: Models, Visualizations, and Summary-Explanations
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
19
41
0
04 Jun 2021
Model Learning with Personalized Interpretability Estimation (ML-PIE)
M. Virgolin
A. D. Lorenzo
Francesca Randone
Eric Medvet
M. Wahde
24
29
0
13 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
28
119
0
03 Dec 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
20
397
0
19 Oct 2020
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
30
51
0
03 Sep 2020
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaML
HAI
59
84
0
08 May 2020
Sparsity in Optimal Randomized Classification Trees
R. Blanquero
E. Carrizosa
Cristina Molero-Río
Dolores Romero Morales
25
45
0
21 Feb 2020
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
Dylan Slack
Sorelle A. Friedler
Emile Givental
FaML
32
54
0
24 Aug 2019
On the Existence of Simpler Machine Learning Models
Lesia Semenova
Cynthia Rudin
Ronald E. Parr
26
85
0
05 Aug 2019
A study on the Interpretability of Neural Retrieval Models using DeepSHAP
Zeon Trevor Fernando
Jaspreet Singh
Avishek Anand
FAtt
AAML
16
68
0
15 Jul 2019
The Price of Interpretability
Dimitris Bertsimas
A. Delarue
Patrick Jaillet
Sébastien Martin
23
33
0
08 Jul 2019
Hybrid Predictive Model: When an Interpretable Model Collaborates with a Black-box Model
Tong Wang
Qihang Lin
38
19
0
10 May 2019
Interpretability with Accurate Small Models
Abhishek Ghose
Balaraman Ravindran
20
1
0
04 May 2019
VINE: Visualizing Statistical Interactions in Black Box Models
M. Britton
FAtt
17
21
0
01 Apr 2019
How to improve the interpretability of kernel learning
Jinwei Zhao
Qizhou Wang
Yufei Wang
Yu Liu
Zhenghao Shi
Xinhong Hei
FAtt
17
0
0
21 Nov 2018
On the Art and Science of Machine Learning Explanations
Patrick Hall
FAtt
XAI
20
30
0
05 Oct 2018
Actionable Recourse in Linear Classification
Berk Ustun
Alexander Spangher
Yang Liu
FaML
28
539
0
18 Sep 2018
Confounding-Robust Policy Improvement
Nathan Kallus
Angela Zhou
CML
OffRL
40
152
0
22 May 2018
Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making
Michael Veale
Max Van Kleek
Reuben Binns
25
409
0
03 Feb 2018
How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation
Menaka Narayanan
Emily Chen
Jeffrey He
Been Kim
S. Gershman
Finale Doshi-Velez
FAtt
XAI
36
241
0
02 Feb 2018
Interpretability via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
16
129
0
29 Jun 2017
Interpreting Blackbox Models via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
27
170
0
23 May 2017
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
60
195
0
06 Apr 2017
Simple rules for complex decisions
Jongbin Jung
Connor Concannon
Ravi Shroff
Sharad Goel
D. Goldstein
CML
21
104
0
15 Feb 2017
Programs as Black-Box Explanations
Sameer Singh
Marco Tulio Ribeiro
Carlos Guestrin
FAtt
16
54
0
22 Nov 2016
Learning Optimized Risk Scores
Berk Ustun
Cynthia Rudin
17
82
0
01 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
17
16,646
0
16 Feb 2016
Learning Optimized Or's of And's
Tong Wang
Cynthia Rudin
19
25
0
06 Nov 2015
1
2
Next