Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.02860
Cited By
Gaussian Processes for Data-Efficient Learning in Robotics and Control
10 February 2015
M. Deisenroth
Dieter Fox
C. Rasmussen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Processes for Data-Efficient Learning in Robotics and Control"
50 / 235 papers shown
Title
Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual Model-Based Reinforcement Learning
Mohammad Babaeizadeh
M. Saffar
Danijar Hafner
Harini Kannan
Chelsea Finn
Sergey Levine
D. Erhan
VLM
27
9
0
08 Dec 2020
Neural Dynamic Policies for End-to-End Sensorimotor Learning
Shikhar Bahl
Mustafa Mukadam
Abhinav Gupta
Deepak Pathak
24
83
0
04 Dec 2020
Multimodal dynamics modeling for off-road autonomous vehicles
J. Tremblay
Travis Manderson
Aurélio Noca
Gregory Dudek
David Meger
26
16
0
23 Nov 2020
The Impact of Data on the Stability of Learning-Based Control- Extended Version
Armin Lederer
A. Capone
Thomas Beckers
Jonas Umlauft
Sandra Hirche
9
10
0
20 Nov 2020
Distilling a Hierarchical Policy for Planning and Control via Representation and Reinforcement Learning
Jung-Su Ha
Young-Jin Park
Hyeok-Joo Chae
Soon-Seo Park
Han-Lim Choi
35
3
0
16 Nov 2020
Learning ODE Models with Qualitative Structure Using Gaussian Processes
Steffen Ridderbusch
Christian Offen
Sina Ober-Blobaum
Paul Goulart
16
15
0
10 Nov 2020
Model-based Reinforcement Learning from Signal Temporal Logic Specifications
Parv Kapoor
Anand Balakrishnan
Jyotirmoy V. Deshmukh
29
22
0
10 Nov 2020
Planning under Uncertainty to Goal Distributions
Adam Conkey
Tucker Hermans
21
3
0
09 Nov 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Gaussian Processes Model-based Control of Underactuated Balance Robots
Kuo Chen
J. Yi
Dezhen Song
18
19
0
29 Oct 2020
Forethought and Hindsight in Credit Assignment
Veronica Chelu
Doina Precup
H. V. Hasselt
22
25
0
26 Oct 2020
Aggregating Dependent Gaussian Experts in Local Approximation
Hamed Jalali
Gjergji Kasneci
21
4
0
17 Oct 2020
Variable impedance control and learning -- A review
Fares J. Abu-Dakka
Matteo Saveriano
AI4CE
41
148
0
13 Oct 2020
Improving Sequential Latent Variable Models with Autoregressive Flows
Joseph Marino
Lei Chen
Jiawei He
Stephan Mandt
BDL
AI4TS
30
12
0
07 Oct 2020
Predicting Sim-to-Real Transfer with Probabilistic Dynamics Models
Lei M. Zhang
Matthias Plappert
Wojciech Zaremba
19
4
0
27 Sep 2020
Stein Variational Gaussian Processes
Thomas Pinder
Christopher Nemeth
David Leslie
BDL
22
7
0
25 Sep 2020
Human-in-the-Loop Methods for Data-Driven and Reinforcement Learning Systems
Vinicius G. Goecks
33
11
0
30 Aug 2020
Document-editing Assistants and Model-based Reinforcement Learning as a Path to Conversational AI
Katya Kudashkina
P. Pilarski
R. Sutton
KELM
25
6
0
27 Aug 2020
Safe Active Dynamics Learning and Control: A Sequential Exploration-Exploitation Framework
T. Lew
Apoorva Sharma
James Harrison
Andrew Bylard
Marco Pavone
28
44
0
26 Aug 2020
Fast Approximate Multi-output Gaussian Processes
V. Joukov
Dana Kulic
11
5
0
22 Aug 2020
Meta Learning MPC using Finite-Dimensional Gaussian Process Approximations
Elena Arcari
Andrea Carron
Melanie Zeilinger
23
14
0
13 Aug 2020
Deep Model-Based Reinforcement Learning for High-Dimensional Problems, a Survey
Aske Plaat
W. Kosters
Mike Preuss
BDL
OffRL
21
17
0
11 Aug 2020
Chance Constrained Policy Optimization for Process Control and Optimization
Panagiotis Petsagkourakis
I. O. Sandoval
E. Bradford
F. Galvanin
Dongda Zhang
Ehecatl Antonio del Rio Chanona
19
36
0
30 Jul 2020
An Iterative LQR Controller for Off-Road and On-Road Vehicles using a Neural Network Dynamics Model
Akhil Nagariya
Srikanth Saripalli
27
28
0
28 Jul 2020
Anticipating the Long-Term Effect of Online Learning in Control
A. Capone
Sandra Hirche
19
4
0
24 Jul 2020
Matérn Gaussian processes on Riemannian manifolds
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
22
120
0
17 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
38
82
0
15 Jun 2020
PAC Bounds for Imitation and Model-based Batch Learning of Contextual Markov Decision Processes
Yash Nair
Finale Doshi-Velez
OffRL
52
2
0
11 Jun 2020
Constrained Reinforcement Learning for Dynamic Optimization under Uncertainty
Panagiotis Petsagkourakis
I. O. Sandoval
E. Bradford
Dongda Zhang
Ehecatl Antonio del Rio Chanona
6
11
0
04 Jun 2020
Localized active learning of Gaussian process state space models
A. Capone
Jonas Umlauft
Thomas Beckers
Armin Lederer
Sandra Hirche
13
27
0
04 May 2020
Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming
Gabriel Riutort-Mayol
Paul-Christian Bürkner
Michael R. Andersen
Arno Solin
Aki Vehtari
32
68
0
23 Apr 2020
Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck
Alec Koppel
Hrusikesha Pradhan
K. Rajawat
8
32
0
23 Apr 2020
Reinforcement Learning via Gaussian Processes with Neural Network Dual Kernels
I. Goumiri
Benjamin W. Priest
M. Schneider
GP
BDL
14
6
0
10 Apr 2020
Planning and Execution using Inaccurate Models with Provable Guarantees
Anirudh Vemula
Yash Oza
J. Andrew Bagnell
Maxim Likhachev
16
18
0
09 Mar 2020
Policy-Aware Model Learning for Policy Gradient Methods
Romina Abachi
Mohammad Ghavamzadeh
Amir-massoud Farahmand
22
34
0
28 Feb 2020
Autonomous robotic nanofabrication with reinforcement learning
Philipp Leinen
Malte Esders
Kristof T. Schütt
C. Wagner
K. Müller
F. Tautz
22
52
0
27 Feb 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
14
163
0
21 Feb 2020
Gaussian Processes with Input Location Error and Applications to the Composite Parts Assembly Process
Wei Cao
Xiaowei Yue
Ben Haaland
C. F. Jeff Wu
14
14
0
04 Feb 2020
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne
F. Briol
Mark Girolami
24
55
0
29 Jan 2020
Tuneful: An Online Significance-Aware Configuration Tuner for Big Data Analytics
Ayat Fekry
Lucian Carata
Thomas Pasquier
Andrew Rice
A. Hopper
34
16
0
22 Jan 2020
On Simulation and Trajectory Prediction with Gaussian Process Dynamics
Lukas Hewing
Elena Arcari
Lukas P. Frohlich
Melanie Zeilinger
25
35
0
23 Dec 2019
AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human Videos
Laura M. Smith
Nikita Dhawan
Marvin Zhang
Pieter Abbeel
Sergey Levine
43
156
0
10 Dec 2019
Scaling active inference
Alexander Tschantz
Manuel Baltieri
A. Seth
Christopher L. Buckley
BDL
AI4CE
19
68
0
24 Nov 2019
On Policy Learning Robust to Irreversible Events: An Application to Robotic In-Hand Manipulation
Pietro Falco
Abdallah Attawia
Matteo Saveriano
Dongheui Lee
19
29
0
20 Nov 2019
Safe Interactive Model-Based Learning
Marco Gallieri
Seyed Sina Mirrazavi Salehian
N. E. Toklu
A. Quaglino
Jonathan Masci
Jan Koutník
Faustino J. Gomez
14
12
0
15 Nov 2019
RoboNet: Large-Scale Multi-Robot Learning
Sudeep Dasari
F. Ebert
Stephen Tian
Suraj Nair
Bernadette Bucher
Karl Schmeckpeper
Siddharth Singh
Sergey Levine
Chelsea Finn
LM&Ro
34
296
0
24 Oct 2019
Multi-View Reinforcement Learning
Minne Li
Lisheng Wu
Haitham Bou-Ammar
Jun Wang
21
26
0
18 Oct 2019
Cascaded Gaussian Processes for Data-efficient Robot Dynamics Learning
S. Rezaei-Shoshtari
David Meger
I. Sharf
6
12
0
05 Oct 2019
Model Imitation for Model-Based Reinforcement Learning
Yueh-hua Wu
Ting-Han Fan
Peter J. Ramadge
H. Su
OffRL
21
16
0
25 Sep 2019
PAC-Bayesian Bounds for Deep Gaussian Processes
R. Foll
Ingo Steinwart
BDL
33
1
0
22 Sep 2019
Previous
1
2
3
4
5
Next