Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.02860
Cited By
Gaussian Processes for Data-Efficient Learning in Robotics and Control
10 February 2015
M. Deisenroth
Dieter Fox
C. Rasmussen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Processes for Data-Efficient Learning in Robotics and Control"
50 / 235 papers shown
Title
Data-efficient Model Learning and Prediction for Contact-rich Manipulation Tasks
S. A. Khader
Hang Yin
Pietro Falco
Danica Kragic
6
2
0
11 Sep 2019
High Dimensional Bayesian Optimization via Supervised Dimension Reduction
Miao Zhang
Huiqi Li
Steven W. Su
27
44
0
21 Jul 2019
Adaptive Prior Selection for Repertoire-based Online Adaptation in Robotics
Rituraj Kaushik
P. Desreumaux
Jean-Baptiste Mouret
OffRL
27
34
0
16 Jul 2019
The Use of Gaussian Processes in System Identification
Simo Särkkä
GP
AI4TS
22
8
0
13 Jul 2019
A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
Oliver Kroemer
S. Niekum
George Konidaris
41
356
0
06 Jul 2019
Benchmarking Model-Based Reinforcement Learning
Tingwu Wang
Xuchan Bao
I. Clavera
Jerrick Hoang
Yeming Wen
Eric D. Langlois
Matthew Shunshi Zhang
Guodong Zhang
Pieter Abbeel
Jimmy Ba
OffRL
34
359
0
03 Jul 2019
Dynamics-Aware Unsupervised Discovery of Skills
Archit Sharma
S. Gu
Sergey Levine
Vikash Kumar
Karol Hausman
42
399
0
02 Jul 2019
Active Learning of Dynamics for Data-Driven Control Using Koopman Operators
Ian Abraham
Todd D. Murphey
24
160
0
12 Jun 2019
A Survey of Behavior Learning Applications in Robotics -- State of the Art and Perspectives
Alexander Fabisch
Christoph Petzoldt
M. Otto
Frank Kirchner
AI4CE
17
13
0
05 Jun 2019
Proximal Reliability Optimization for Reinforcement Learning
Narendra Patwardhan
Zequn Wang
18
0
0
03 Jun 2019
Bayesian Evidential Deep Learning with PAC Regularization
Manuel Haussmann
S. Gerwinn
M. Kandemir
UQCV
EDL
BDL
14
1
0
03 Jun 2019
Reinforcement Learning for Robotics and Control with Active Uncertainty Reduction
Narendra Patwardhan
Zequn Wang
22
1
0
15 May 2019
Learning to Guide: Guidance Law Based on Deep Meta-learning and Model Predictive Path Integral Control
Chen Liang
Weihong Wang
Zhenghua Liu
Chao Lai
Benchun Zhou
19
28
0
15 Apr 2019
Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features
Arno Solin
Manon Kok
18
23
0
10 Apr 2019
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
24
226
0
19 Mar 2019
Financial Applications of Gaussian Processes and Bayesian Optimization
Joan Gonzalvez
Edmond Lezmi
T. Roncalli
Jiali Xu
20
54
0
12 Mar 2019
Data-Driven Gait Segmentation for Walking Assistance in a Lower-Limb Assistive Device
A. Kalinowska
Thomas A. Berrueta
A. Zoss
Todd D. Murphey
18
9
0
28 Feb 2019
Total stochastic gradient algorithms and applications in reinforcement learning
Paavo Parmas
36
17
0
05 Feb 2019
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos
Paavo Parmas
C. Rasmussen
Jan Peters
Kenji Doya
13
85
0
04 Feb 2019
Low Level Control of a Quadrotor with Deep Model-Based Reinforcement Learning
Nathan Lambert
Daniel S. Drew
Joseph Yaconelli
Roberto Calandra
Sergey Levine
K. Pister
11
145
0
11 Jan 2019
Generative Adversarial User Model for Reinforcement Learning Based Recommendation System
Xinshi Chen
Shuang Li
Hui Li
Shaohua Jiang
Yuan Qi
Le Song
22
207
0
27 Dec 2018
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
Jamie Fairbrother
Christopher Nemeth
M. Rischard
Johanni Brea
Thomas Pinder
GP
VLM
32
24
0
21 Dec 2018
Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study
Matthias Neumann-Brosig
A. Marco
D. Schwarzmann
Sebastian Trimpe
24
91
0
15 Dec 2018
Residual Policy Learning
Tom Silver
Kelsey R. Allen
J. Tenenbaum
L. Kaelbling
OffRL
26
173
0
15 Dec 2018
An Algorithmic Perspective on Imitation Learning
Takayuki Osa
Joni Pajarinen
Gerhard Neumann
J. Andrew Bagnell
Pieter Abbeel
Jan Peters
50
830
0
16 Nov 2018
A Hybrid Approach for Trajectory Control Design
L. Freda
M. Gianni
F. Pirri
14
0
0
08 Oct 2018
Auto-conditioned Recurrent Mixture Density Networks for Learning Generalizable Robot Skills
Hejia Zhang
Eric Heiden
Stefanos Nikolaidis
Joseph J. Lim
Gaurav Sukhatme
12
10
0
29 Sep 2018
Combining Simulations and Real-robot Experiments for Bayesian Optimization of Bipedal Gait Stabilization
Diego Rodriguez
André Brandenburger
Sven Behnke
6
14
0
14 Sep 2018
Semiparametrical Gaussian Processes Learning of Forward Dynamical Models for Navigating in a Circular Maze
Diego Romeres
Devesh K. Jha
Alberto Dalla Libera
W. Yerazunis
D. Nikovski
35
28
0
13 Sep 2018
SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning
Marvin Zhang
Sharad Vikram
Laura M. Smith
Pieter Abbeel
Matthew J. Johnson
Sergey Levine
OffRL
23
41
0
28 Aug 2018
A survey on policy search algorithms for learning robot controllers in a handful of trials
Konstantinos Chatzilygeroudis
Vassilis Vassiliades
F. Stulp
Sylvain Calinon
Jean-Baptiste Mouret
17
155
0
06 Jul 2018
Multi-objective Model-based Policy Search for Data-efficient Learning with Sparse Rewards
Rituraj Kaushik
Konstantinos Chatzilygeroudis
Jean-Baptiste Mouret
31
19
0
25 Jun 2018
Stable Gaussian Process based Tracking Control of Euler-Lagrange Systems
Thomas Beckers
Dana Kulić
Sandra Hirche
11
123
0
19 Jun 2018
Combining Model-Free Q-Ensembles and Model-Based Approaches for Informed Exploration
Sreecharan Sankaranarayanan
Raghuram Mandyam Annasamy
Katia Sycara
Carolyn Rose
17
0
0
12 Jun 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
30
1,254
0
30 May 2018
Data-driven Policy Transfer with Imprecise Perception Simulation
M. Pecka
Karel Zimmermann
Matěj Petrlík
Tomáš Svoboda
22
11
0
05 Apr 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
Katja Hofmann
M. Deisenroth
BDL
OffRL
AI4CE
34
142
0
20 Mar 2018
Learning non-Gaussian Time Series using the Box-Cox Gaussian Process
Gonzalo Rios
Felipe A. Tobar
GP
21
14
0
19 Mar 2018
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
25
94
0
16 Mar 2018
Synthesizing Neural Network Controllers with Probabilistic Model based Reinforcement Learning
J. A. G. Higuera
David Meger
Gregory Dudek
BDL
22
39
0
06 Mar 2018
Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making
L. Zintgraf
D. Roijers
Sjoerd Linders
Catholijn M. Jonker
A. Nowé
16
49
0
21 Feb 2018
Composite Gaussian Processes: Scalable Computation and Performance Analysis
Xiuming Liu
Dave Zachariah
Edith C.H. Ngai
16
0
0
31 Jan 2018
Kernel Distillation for Fast Gaussian Processes Prediction
Congzheng Song
Yiming Sun
GP
13
1
0
31 Jan 2018
Algorithmic Linearly Constrained Gaussian Processes
Markus Lange-Hegermann
26
34
0
28 Jan 2018
Diff-DAC: Distributed Actor-Critic for Average Multitask Deep Reinforcement Learning
Sergio Valcarcel Macua
Aleksi Tukiainen
D. Hernández
David Baldazo
Enrique Munoz de Cote
S. Zazo
32
29
0
28 Oct 2017
Safe Learning of Quadrotor Dynamics Using Barrier Certificates
Li Wang
Evangelos A. Theodorou
M. Egerstedt
11
190
0
16 Oct 2017
Learning Unmanned Aerial Vehicle Control for Autonomous Target Following
Siyi Li
Tianbo Liu
Chi Zhang
Dit-Yan Yeung
Shaojie Shen
6
37
0
24 Sep 2017
Bayesian Optimization with Automatic Prior Selection for Data-Efficient Direct Policy Search
Rémi Pautrat
Konstantinos Chatzilygeroudis
Jean-Baptiste Mouret
34
44
0
20 Sep 2017
Using Parameterized Black-Box Priors to Scale Up Model-Based Policy Search for Robotics
Konstantinos Chatzilygeroudis
Jean-Baptiste Mouret
23
45
0
20 Sep 2017
MBMF: Model-Based Priors for Model-Free Reinforcement Learning
Somil Bansal
Roberto Calandra
Kurtland Chua
Sergey Levine
Claire Tomlin
OffRL
27
36
0
10 Sep 2017
Previous
1
2
3
4
5
Next