Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.3730
Cited By
Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It
11 December 2014
Peter Grünwald
T. V. Ommen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It"
50 / 148 papers shown
Title
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
Arnaud Delaunoy
Joeri Hermans
François Rozet
Antoine Wehenkel
Gilles Louppe
44
30
0
29 Aug 2022
Sampling algorithms in statistical physics: a guide for statistics and machine learning
Michael F Faulkner
Samuel Livingstone
18
6
0
09 Aug 2022
Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics
Jeffrey Negrea
Jun Yang
Haoyue Feng
Daniel M. Roy
Jonathan H. Huggins
11
1
0
25 Jul 2022
The Importance Markov Chain
Charly Andral
Randal Douc
Hugo Marival
Christian P. Robert
26
4
0
17 Jul 2022
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study
Tom Huix
Szymon Majewski
Alain Durmus
Eric Moulines
Anna Korba
BDL
18
6
0
08 Jul 2022
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
42
5
0
22 Jun 2022
Optimal quasi-Bayesian reduced rank regression with incomplete response
The Tien Mai
Pierre Alquier
39
2
0
17 Jun 2022
Deep Bootstrap for Bayesian Inference
Lizhen Nie
Veronika Rockova
UQCV
BDL
29
3
0
30 May 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
82
8
0
27 May 2022
Bernstein - von Mises theorem and misspecified models: a review
N. Bochkina
14
9
0
28 Apr 2022
Scalable Semi-Modular Inference with Variational Meta-Posteriors
Chris U. Carmona
Geoff K. Nicholls
14
11
0
01 Apr 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDL
UD
26
49
0
30 Mar 2022
Modularized Bayesian analyses and cutting feedback in likelihood-free inference
Atlanta Chakraborty
David J. Nott
Christopher C. Drovandi
David T. Frazier
Scott A. Sisson
33
14
0
18 Mar 2022
Robust PAC
m
^m
m
: Training Ensemble Models Under Misspecification and Outliers
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
16
5
0
03 Mar 2022
Cutting feedback and modularized analyses in generalized Bayesian inference
David T. Frazier
David J. Nott
30
7
0
21 Feb 2022
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
46
42
0
09 Feb 2022
The no-free-lunch theorems of supervised learning
T. Sterkenburg
Peter Grünwald
FedML
26
56
0
09 Feb 2022
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
36
35
0
16 Dec 2021
Uncertainty estimation under model misspecification in neural network regression
Maria R. Cervera
Rafael Dätwyler
Francesco DÁngelo
Hamza Keurti
Benjamin Grewe
Christian Henning
39
6
0
23 Nov 2021
Posterior concentration and fast convergence rates for generalized Bayesian learning
L. Ho
Binh T. Nguyen
Vu C. Dinh
D. M. Nguyen
30
5
0
19 Nov 2021
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
69
199
0
21 Oct 2021
Asymptotics of cut distributions and robust modular inference using Posterior Bootstrap
E. Pompe
Pierre E. Jacob
21
14
0
21 Oct 2021
Gibbs posterior inference on a Levy density under discrete sampling
Zhe Wang
Ryan Martin
16
3
0
14 Sep 2021
Laplace and Saddlepoint Approximations in High Dimensions
Yanbo Tang
Nancy Reid
16
7
0
22 Jul 2021
Calibrating generalized predictive distributions
Pei-Shien Wu
Ryan Martin
44
8
0
04 Jul 2021
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
CML
30
23
0
11 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
32
37
0
10 Jun 2021
An efficient adaptive MCMC algorithm for Pseudo-Bayesian quantum tomography
The Tien Mai
20
1
0
01 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
38
124
0
14 May 2021
On the Robustness to Misspecification of
α
α
α
-Posteriors and Their Variational Approximations
Marco Avella-Medina
J. M. Olea
Cynthia Rush
Amilcar Velez
24
19
0
16 Apr 2021
PAC-Bayesian Matrix Completion with a Spectral Scaled Student Prior
The Tien Mai
39
2
0
16 Apr 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
32
74
0
15 Apr 2021
Synthetic Likelihood in Misspecified Models: Consequences and Corrections
David T. Frazier
Christopher C. Drovandi
David J. Nott
31
10
0
08 Apr 2021
Introducing prior information in Weighted Likelihood Bootstrap with applications to model misspecification
E. Pompe
23
9
0
26 Mar 2021
Active multi-fidelity Bayesian online changepoint detection
Gregory W. Gundersen
Diana Cai
Chuteng Zhou
Barbara E. Engelhardt
Ryan P. Adams
22
10
0
26 Mar 2021
The Shape of Learning Curves: a Review
T. Viering
Marco Loog
20
124
0
19 Mar 2021
Comparing the Value of Labeled and Unlabeled Data in Method-of-Moments Latent Variable Estimation
Mayee F. Chen
Benjamin Cohen-Wang
Stephen Mussmann
Frederic Sala
Christopher Ré
48
10
0
03 Mar 2021
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
212
81
0
16 Feb 2021
A comparison of learning rate selection methods in generalized Bayesian inference
Pei-Shien Wu
Ryan Martin
BDL
14
43
0
21 Dec 2020
Gibbs posterior concentration rates under sub-exponential type losses
Nicholas Syring
Ryan Martin
26
29
0
08 Dec 2020
Robustness on Networks
Marios Papamichalis
Simón Lunagómez
P. Wolfe
13
0
0
05 Dec 2020
Foundations of Bayesian Learning from Synthetic Data
H. Wilde
Jack Jewson
Sebastian J. Vollmer
Chris Holmes
19
15
0
16 Nov 2020
Amortized Conditional Normalized Maximum Likelihood: Reliable Out of Distribution Uncertainty Estimation
Aurick Zhou
Sergey Levine
BDL
OOD
UQCV
6
13
0
05 Nov 2020
PAC
m
^m
m
-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
87
16
0
19 Oct 2020
Probabilistic Machine Learning for Healthcare
Irene Y. Chen
Shalmali Joshi
Marzyeh Ghassemi
Rajesh Ranganath
OOD
11
52
0
23 Sep 2020
A statistical theory of cold posteriors in deep neural networks
Laurence Aitchison
UQCV
BDL
17
69
0
13 Aug 2020
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
60
65
0
23 Jul 2020
Optimal Bayesian estimation of Gaussian mixtures with growing number of components
Ilsang Ohn
Lizhen Lin
45
17
0
17 Jul 2020
Finite mixture models do not reliably learn the number of components
Diana Cai
Trevor Campbell
Tamara Broderick
25
22
0
08 Jul 2020
Localization Uncertainty Estimation for Anchor-Free Object Detection
Youngwan Lee
Joong-won Hwang
Hyungil Kim
Kimin Yun
Yongjin Kwon
Yuseok Bae
Joungyoul Park
16
30
0
28 Jun 2020
Previous
1
2
3
Next