ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.5928
  4. Cited By
Learning to Generate Chairs, Tables and Cars with Convolutional Networks

Learning to Generate Chairs, Tables and Cars with Convolutional Networks

21 November 2014
Alexey Dosovitskiy
Jost Tobias Springenberg
Maxim Tatarchenko
Thomas Brox
    GAN
ArXivPDFHTML

Papers citing "Learning to Generate Chairs, Tables and Cars with Convolutional Networks"

37 / 137 papers shown
Title
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
106
4,215
0
12 Jun 2016
Synthesizing Dynamic Patterns by Spatial-Temporal Generative ConvNet
Synthesizing Dynamic Patterns by Spatial-Temporal Generative ConvNet
Jianwen Xie
Song-Chun Zhu
Ying Nian Wu
GAN
37
10
0
03 Jun 2016
Deeper Depth Prediction with Fully Convolutional Residual Networks
Deeper Depth Prediction with Fully Convolutional Residual Networks
Iro Laina
Christian Rupprecht
Vasileios Belagiannis
Federico Tombari
Nassir Navab
3DV
MDE
18
1,819
0
01 Jun 2016
The Latin American Giant Observatory: a successful collaboration in
  Latin America based on Cosmic Rays and computer science domains
The Latin American Giant Observatory: a successful collaboration in Latin America based on Cosmic Rays and computer science domains
Hernán Asorey
R. Mayo-García
L. Núñez
M. Pascual
A. J. Rubio-Montero
M. Suárez-Durán
L. A. Torres-Niño
31
5
0
30 May 2016
cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey
cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey
Hirokatsu Kataoka
Yudai Miyashita
Tomoaki K. Yamabe
Soma Shirakabe
Shin-ichi Sato
...
Kaori Abe
Takaaki Imanari
Naomichi Kobayashi
Shinichiro Morita
Akio Nakamura
24
2
0
26 May 2016
ASP Vision: Optically Computing the First Layer of Convolutional Neural
  Networks using Angle Sensitive Pixels
ASP Vision: Optically Computing the First Layer of Convolutional Neural Networks using Angle Sensitive Pixels
H. G. Chen
Suren Jayasuriya
Jiyue Yang
J. Stephen
S. Sivaramakrishnan
Ashok Veeraraghavan
A. Molnar
26
66
0
11 May 2016
View Synthesis by Appearance Flow
View Synthesis by Appearance Flow
Tinghui Zhou
Shubham Tulsiani
Weilun Sun
Jitendra Malik
Alexei A. Efros
37
689
0
11 May 2016
Single Image 3D Interpreter Network
Single Image 3D Interpreter Network
Jiajun Wu
Tianfan Xue
Joseph J Lim
Yuandong Tian
J. Tenenbaum
Antonio Torralba
William T. Freeman
3DV
28
285
0
29 Apr 2016
Makeup like a superstar: Deep Localized Makeup Transfer Network
Makeup like a superstar: Deep Localized Makeup Transfer Network
Si Liu
Xinyu Ou
Ruihe Qian
Wei Wang
Xiaochun Cao
OOD
31
89
0
25 Apr 2016
Precomputed Real-Time Texture Synthesis with Markovian Generative
  Adversarial Networks
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
Chuan Li
Michael Wand
GAN
42
1,431
0
15 Apr 2016
VConv-DAE: Deep Volumetric Shape Learning Without Object Labels
VConv-DAE: Deep Volumetric Shape Learning Without Object Labels
Abhishek Sharma
O. Grau
Mario Fritz
3DPC
28
279
0
13 Apr 2016
Recurrent Attentional Networks for Saliency Detection
Recurrent Attentional Networks for Saliency Detection
Jason Kuen
Zhenhua Wang
G. Wang
29
238
0
12 Apr 2016
3D-R2N2: A Unified Approach for Single and Multi-view 3D Object
  Reconstruction
3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
Chris Choy
Danfei Xu
JunYoung Gwak
Kevin Chen
Silvio Savarese
3DV
38
1,706
0
02 Apr 2016
Learning a Predictable and Generative Vector Representation for Objects
Learning a Predictable and Generative Vector Representation for Objects
Rohit Girdhar
David Fouhey
Mikel D. Rodriguez
Abhinav Gupta
3DV
37
708
0
29 Mar 2016
Pixel-Level Domain Transfer
Pixel-Level Domain Transfer
Donggeun Yoo
Namil Kim
Sunggyun Park
Anthony S. Paek
In So Kweon
GAN
20
315
0
24 Mar 2016
Generative Image Modeling using Style and Structure Adversarial Networks
Generative Image Modeling using Style and Structure Adversarial Networks
Xinyu Wang
Abhinav Gupta
GAN
33
617
0
17 Mar 2016
Learning Gaze Transitions from Depth to Improve Video Saliency
  Estimation
Learning Gaze Transitions from Depth to Improve Video Saliency Estimation
G. Leifman
D. Rudoy
Tristan Swedish
E. Bayro-Corrochano
Ramesh Raskar
MDE
34
44
0
11 Mar 2016
Texture Networks: Feed-forward Synthesis of Textures and Stylized Images
Texture Networks: Feed-forward Synthesis of Textures and Stylized Images
Dmitry Ulyanov
V. Lebedev
Andrea Vedaldi
Victor Lempitsky
3DH
14
943
0
10 Mar 2016
Convolutional Patch Representations for Image Retrieval: an Unsupervised
  Approach
Convolutional Patch Representations for Image Retrieval: an Unsupervised Approach
Mattis Paulin
Julien Mairal
Matthijs Douze
Zaïd Harchaoui
Florent Perronnin
Cordelia Schmid
SSL
28
65
0
01 Mar 2016
Disentangled Representations in Neural Models
Disentangled Representations in Neural Models
William F. Whitney
OOD
OCL
DRL
30
18
0
07 Feb 2016
Autoencoding beyond pixels using a learned similarity metric
Autoencoding beyond pixels using a learned similarity metric
Anders Boesen Lindbo Larsen
Søren Kaae Sønderby
Hugo Larochelle
Ole Winther
GAN
100
2,054
0
31 Dec 2015
Multi-view 3D Models from Single Images with a Convolutional Network
Multi-view 3D Models from Single Images with a Convolutional Network
Maxim Tatarchenko
Alexey Dosovitskiy
Thomas Brox
3DV
28
382
0
20 Nov 2015
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
164
13,937
0
19 Nov 2015
Deep Manifold Traversal: Changing Labels with Convolutional Features
Deep Manifold Traversal: Changing Labels with Convolutional Features
Jacob R. Gardner
P. Upchurch
Matt J. Kusner
Yixuan Li
Kilian Q. Weinberger
Kavita Bala
J. Hopcroft
34
65
0
19 Nov 2015
Deep multi-scale video prediction beyond mean square error
Deep multi-scale video prediction beyond mean square error
Michaël Mathieu
Camille Couprie
Yann LeCun
GAN
77
1,878
0
17 Nov 2015
Deep Reflectance Maps
Deep Reflectance Maps
Konstantinos Rematas
Tobias Ritschel
Mario Fritz
E. Gavves
Tinne Tuytelaars
33
103
0
13 Nov 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
38
1,132
0
05 Nov 2015
Learning FRAME Models Using CNN Filters
Learning FRAME Models Using CNN Filters
Yang Lu
Song-Chun Zhu
Ying Nian Wu
GAN
28
66
0
28 Sep 2015
Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images
Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images
Alexander Krull
Eric Brachmann
Frank Michel
M. Yang
Stefan Gumhold
Carsten Rother
SSL
27
199
0
19 Aug 2015
Action-Conditional Video Prediction using Deep Networks in Atari Games
Action-Conditional Video Prediction using Deep Networks in Atari Games
Junhyuk Oh
Xiaoxiao Guo
Honglak Lee
Richard L. Lewis
Satinder Singh
51
851
0
31 Jul 2015
DeepStereo: Learning to Predict New Views from the World's Imagery
DeepStereo: Learning to Predict New Views from the World's Imagery
John Flynn
Ivan Neulander
James Philbin
Noah Snavely
3DV
59
646
0
22 Jun 2015
Inverting Visual Representations with Convolutional Networks
Inverting Visual Representations with Convolutional Networks
Alexey Dosovitskiy
Thomas Brox
SSL
FAtt
39
661
0
09 Jun 2015
Understanding deep features with computer-generated imagery
Understanding deep features with computer-generated imagery
Mathieu Aubry
Bryan C. Russell
24
148
0
03 Jun 2015
Robust Optimization for Deep Regression
Robust Optimization for Deep Regression
Vasileios Belagiannis
Christian Rupprecht
G. Carneiro
Nassir Navab
3DH
40
180
0
25 May 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
447
76,039
0
18 May 2015
FlowNet: Learning Optical Flow with Convolutional Networks
FlowNet: Learning Optical Flow with Convolutional Networks
Philipp Fischer
Alexey Dosovitskiy
Eddy Ilg
Philip Häusser
C. Hazirbas
Vladimir Golkov
Patrick van der Smagt
Daniel Cremers
Thomas Brox
3DPC
76
4,147
0
26 Apr 2015
Deep Convolutional Inverse Graphics Network
Deep Convolutional Inverse Graphics Network
Tejas D. Kulkarni
William F. Whitney
Pushmeet Kohli
J. Tenenbaum
DRL
BDL
50
929
0
11 Mar 2015
Previous
123